Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
Citation: Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007

Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness

More Information
  • Received Date: March 13, 2014
  • Revised Date: June 16, 2014
  • Some uncertainties exist in shale brittleness index evaluation by using rock mechanics parameters.While it cannot present actual formation brittleness by using mineral content.A new evaluation model for shale brittleness was established based on conventional calculation method using mineral content and integrating fracture toughness as weighing coefficient for each mineral.In this paper,the new model,rock mechanical model and mineral content model were compared.It was found that,for an interval with abnormal rock mechanics properties,the new model provided a result aproximately 10% higher than the rock mechanical model and consistent with the stimulation results.Moreover,a negative linear relationship existes between fracture toughness and brittleness index-higher fracture toughness,lower brittleness index,and vice versa.Analysis showed that the new model avoided the defects of single mineral content model and was irrelevant to gas and organic materials in shale formation.Therefore,the new model is efficient for shale formation evaluation.
  • [1]
    Buller D, Hughes S, Market J, et al.Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R].SPE 132990, 2010.
    [2]
    李庆辉, 陈勉, 金衍, 等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报, 2012, 31(8): 1680-1685. Li Qinghui, Chen Mian, Jin Yan, et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680-1685.
    [3]
    Hucka V, Das B.Brittleness determination of rocks by different methods[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10): 389-392.
    [4]
    Altindag R.Correlation of specific energy with rock brittleness concepts on rock cutting[J].The Journal of the South African Institute of Mining and Metallurgy, 2003, 103(3): 163-171.
    [5]
    Andreev G E.Brittle failure of rock materials:test results and constitutive models[M].Rotterdam:A A Balkema Press, 1995:123-127.
    [6]
    Bishop A W.Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference, Olso:[s.n.], 1967:142-150.
    [7]
    Hajiabdolmajid V, Kaiser P.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Underground Space Technology, 2003, 18(1):35-48.
    [8]
    Copur H, Bilgin N, Tuncdemir H, et al.A set of indices based on indentation test for assessment of rock cutting performance and rock properties[J].Journal of the South African Institute of Mining and Metallurgy, 2003, 103(9):589-600.
    [9]
    Yagiz S.An investigation on the relationship between rock strength and brittleness[C]//Proceedings of the 59th Geological Congress of Turkey.Ankara, Turkey:MTA General Directory Press, 2006:352.
    [10]
    Honda H, Sanada Y.Hardness of coal[J].Fuel, 1956, 35:451.
    [11]
    Lawn B R, Marshall D B.Hardness, toughness and brittleness:an indentation analysis[J].Journal of American Ceramic Society, 1979, 62(7/8):347-350.
    [12]
    Quinn J B, Quinn G D.Indentation brittleness of ceramics:a fresh approach[J].Journal of Materials Science, 1997, 32(16):4331-4346.
    [13]
    Protodyakonov M M.Mechanical properties and drill-ability of rocks[C]//Proceedings of the 5th Symposium on Rock Mechanics.Twin Cities, USA:University of Minnesota Press, 1963:103-118.
    [14]
    Ingram G M, Urai J L.Top-seal leakage through faults and fractures: the role of mudrock properties[J].Geological Society, 1999, 158(1):125-135.
    [15]
    Evans B, Fredrich J, Wong T F.The brittle-ductile transition in rocks:recent experiment and theoretical progress[M]//Duba A G, Durham W B, Handin J W, et al.The heard volume.:Am Goephys Union, 1990:1-20.
    [16]
    Rickman R, MulleN M, Petre E, et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale[R].SPE 115258, 2008.
    [17]
    Jarvie D M, Hill R J, Ruble T E, et al.Unconventional shale-gas systems:the mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4):475-499.
    [18]
    陈颙, 黄庭芳, 刘恩儒.岩石物理学[M].合肥:中国科学技术大学出版社, 2009:121-131. Chen Yong, Huang Tingfang, Liu Enru.Rock physics[M].Hefei:University of Science and Technology of China Press, 2009:121-131.
    [19]
    蔡美峰.岩石力学与工程[M].北京:科学出版社, 2002: 180-186. Cai Meifeng.Rock mechanics and engineering[M].Beijing:Science Press, 2002:180-186.
    [20]
    范天佑.断裂理论基础[M].北京:科学出版社, 2003:73-100. Fan Tianyou.Fracture theory[M].Beijing:Science Press, 2003:73-100.
    [21]
    葛瑞·马沃可, 塔潘·木克基, 杰克·德沃金.岩石物理手册:孔隙介质中地震分析工具[M].合肥:中国科学技术大学出版社, 1998:18-31. Gary Mavko, Tapan Mukerji, Jack Dvorkin.The rock physics handbook:tools for seismic analysis in porous media[M].Hefei:University of Science and Technlogy of Chin Press, 1998:18-31.
    [22]
    金衍, 陈勉, 张旭东.利用测井资料预测深部地层岩石断裂韧性[J].岩石力学与工程学报, 2001, 20(4):454-456. JinYan, Chen Mian, Zhang Xudong.Determination of fracture toughness for deep well rock with geophysical logging data[J].Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4):454-456.
  • Related Articles

    [1]YU Haitang, DING Yi, LIU Yanmei, PENG Miao, LIANG Lixi, YU Xiaolong. A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139-148. DOI: 10.11911/syztjs.2023054
    [2]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [3]ZHENG Chunfeng, WEI Chen, ZHANG Haitao, LI Ang, MENG Hongxia. A New Forecasting Model of a Wellbore Wax Deposition Profile in a Offshore Well[J]. Petroleum Drilling Techniques, 2017, 45(4): 103-109. DOI: 10.11911/syztjs.201704018
    [4]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [5]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [6]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [7]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(44)

    1. 李红梅,曲志鹏,张云银,冯德永. HTI介质下五维地震脆性稳定预测方法研究. 石油物探. 2025(01): 151-162 .
    2. 薛熠,杨博鹍,刘勇,孙强,张云,曹正正. 液氮循环冷冲击作用下高温花岗岩Ⅰ型断裂特性研究. 岩土力学. 2025(02): 422-436 .
    3. 张红杰,杨光,吴昊,孙龙,刘智军,高巍,乔传乡,曾勇坚. 页岩油储层脆性指数贝叶斯叠前地震直接反演方法. 海相油气地质. 2025(02): 177-184 .
    4. 张文,刘向君,梁利喜,熊健,吴建军,李兵. 海陆过渡相储层不同岩性断裂特征及其对压裂的影响. 油气地质与采收率. 2024(06): 74-88 .
    5. 张润雪,林伯韬. 非均质超稠油疏松砂岩储层可压性评价. 新疆石油天然气. 2023(01): 57-64 .
    6. 田新,宋志华,田治康,杜天玮. 含气页岩储层脆性及裂缝参数方位地震反演方法研究与应用. 地球物理学进展. 2023(03): 1191-1203 .
    7. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    8. 杜佳,朱光辉,李勇,吴鹏,高计县,祝彦贺. 鄂尔多斯盆缘致密砂岩气藏勘探开发挑战与技术对策——以临兴——神府气田为例. 天然气工业. 2022(01): 114-124 .
    9. 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价. 天然气地球科学. 2022(07): 1102-1116 .
    10. 常小龙,曹旭,刘锐,方少伯,孙志高,田泽华. 基于岩屑分形维数的岩石脆性评价方法. 录井工程. 2022(04): 19-24 .
    11. 张超,白允,安永林,汪辉平,曾兴. 基于全应力应变曲线的岩石脆性特征评价新方法. 公路交通科技. 2021(03): 63-72 .
    12. 李帆,巴晶,符力耘,檀文慧,于庭,曹青业. 页岩可压裂性声学模型及应用. 应用声学. 2020(01): 45-53 .
    13. 廖东良. 页岩气层“双甜点”评价方法及工程应用展望. 石油钻探技术. 2020(04): 94-99 . 本站查看
    14. 胡清波,梁海安,杨婷,程新俊,陈海康,张龙鹏. 一种基于统计损伤本构关系的岩石脆性评价新方法. 哈尔滨工业大学学报. 2020(11): 147-156 .
    15. 李旻翾,孙敬,胡佳妮,刘德华,袁博. 页岩气水平井段甜点优选模型. 科学技术与工程. 2020(24): 9844-9850 .
    16. 赵丹云,刘修刚,秦可,杜建锋,张宏钧,申瑞臣. 基于微观弹性模量与矿物组分页岩脆性评价方法研究. 西部探矿工程. 2019(05): 28-31 .
    17. 朱德宇,罗群,姜振学,杨威,刘冬冬,罗靓岭. 吉木萨尔凹陷芦草沟组致密储集层裂缝特征及主控因素. 新疆石油地质. 2019(03): 276-283 .
    18. 郭子枫,刘春秀,雷勇刚,黄秉亚,王志玲,郑邦贤. 基于岩石特性的扎哈泉油田缝网压裂可行性分析. 大庆石油地质与开发. 2019(04): 90-95 .
    19. 曹茜,戚明辉,张昊天,黄毅,张烨毓. 一种基于应力-应变特征的岩石脆性指数评价改进方法. 岩性油气藏. 2019(04): 54-61 .
    20. 侯振学,张国华,王文文,成家杰,王俊华,钱玉萍. 最优化方法在非常规致密砂岩储层中的应用. 复杂油气藏. 2019(03): 10-15 .
    21. 廖东良,曾义金. 利用测井资料建立地层剪破裂模型. 吉林大学学报(地球科学版). 2018(04): 1268-1276 .
    22. 庄德宝. 低渗透油田缝网压裂的实践与认识. 化学工程与装备. 2018(06): 43-46 .
    23. 王瀚玮,夏宏泉,刘畅,赵昊. 页岩储层脆性指数的随钻测井计算方法研究——以威远地区寒武系筇竹寺组为例. 油气藏评价与开发. 2018(03): 73-78 .
    24. 任岩,曹宏,姚逢昌,卢明辉,杨志芳,李晓明. 岩石脆性评价方法进展. 石油地球物理勘探. 2018(04): 875-886+658 .
    25. 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数. 天然气地球科学. 2018(02): 245-250 .
    26. 廖东良,路保平. 页岩气工程甜点评价方法——以四川盆地焦石坝页岩气田为例. 天然气工业. 2018(02): 43-50 .
    27. 张羽,范存辉,钟城,叶朝阳,秦启荣,李虎. 复杂地质特征中富有机质页岩脆性评价方法研究. 地质与勘探. 2018(05): 1069-1083 .
    28. 李帅,陈军斌,刘京,李育,曹毅,聂向荣. 基于灰度关联法的陆相页岩脆性评价新方法. 西安石油大学学报(自然科学版). 2018(06): 42-48+54 .
    29. 赖富强,罗涵,龚大建,夏炜旭,李飞. 一种新的页岩气储层脆性指数评价模型研究——以贵州下寒武统牛蹄塘组页岩储层为例. 地球物理学进展. 2018(06): 2358-2367 .
    30. 李帅,陈军斌,王汉青,黄瑞,李育,刘京,聂向荣. 鄂尔多斯盆地南部长7段陆相页岩储层脆性评价新方法. 中国科技论文. 2018(21): 2468-2474 .
    31. 郭聪,张冲,朱林奇,黄雨阳,程媛. 基于元素俘获测井的页岩脆性评价方法及应用. 矿物岩石地球化学通报. 2017(06): 1040-1047 .
    32. 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨. 石油钻探技术. 2017(02): 25-31 . 本站查看
    33. 王志战. 国内非常规油气录井技术进展及发展趋势. 石油钻探技术. 2017(06): 1-7 . 本站查看
    34. 肖雯,李小龙,张伟,张淑娟,李敏,郭天魁. 现河油区低渗稠油储层压裂可行性及裂缝导流能力研究. 承德石油高等专科学校学报. 2016(05): 10-13+21 .
    35. 李明,马收,夏英杰,任占春,黄波,李爱山,李连崇. 基于模拟的岩芯脆性室内评价方法对比与分析. 辽宁工程技术大学学报(自然科学版). 2016(08): 859-865 .
    36. 陈艳秋. 页岩储层可压性调研及新发现. 科技风. 2016(14): 194+198 .
    37. 汪磊. 基于岩石物理分析的页岩脆性矿物优选. 石化技术. 2016(04): 174-175 .
    38. 李先锋,汪磊. 基于矿物组分页岩气储层脆性评价方法对比分析. 石化技术. 2016(08): 42 .
    39. 王汉青,陈军斌,张杰,谢青,魏波,赵逸然. 基于权重分配的页岩气储层可压性评价新方法. 石油钻探技术. 2016(03): 88-94 . 本站查看
    40. 梁利喜,何顺平,张安东. CCNBD试样测试页岩I型断裂韧性. 西部探矿工程. 2016(11): 41-43+46 .
    41. 黄军平,张智盛,杨占龙,黄云峰,邸俊,张丽萍. 致密岩石矿物组分含量及脆性指数多元回归定量预测. 新疆石油地质. 2016(03): 346-351 .
    42. 夏英杰,李连崇,唐春安,马收,李明,包春燕. 基于峰后应力跌落速率及能量比的岩体脆性特征评价方法. 岩石力学与工程学报. 2016(06): 1141-1154 .
    43. 廖东良. 页岩地层ECS测井资料解释新方法及其应用. 石油钻探技术. 2015(04): 102-107 . 本站查看
    44. 任中豪,张文昌,朱新民,晋新伟,田文涛. 测井标准井节箍深度值的确定新方法. 石油钻探技术. 2014(06): 68-72 . 本站查看

    Other cited types(44)

Catalog

    Article Metrics

    Article views (4299) PDF downloads (3802) Cited by(88)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return