HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
Citation: HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078

Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs

More Information
  • Received Date: June 05, 2018
  • Revised Date: June 25, 2019
  • Available Online: September 11, 2019
  • Having a closely detailed description of the nonlinear relationship between flow velocity and pressure gradient in low permeability reservoir is necessary for accurately developing the frac design, and calculating the production of a group (or unit) of wells that have been hydraulically fractured. Therefore, based on the description of the nonlinear seepage characteristics of low permeability reservoir, a nonlinear mathematical model of coupling low permeability reservoir and hydraulic fractures was established, which divided the seepage process into the nonlinear seepage stage and quasi-linearity stage according to the seepage characteristics. The Taylor expansion was used to linearize the nonlinear mathematical model, and established the finite difference equations, and then formed the computer solving model. The results of example analysis showed that the distributions of formation pressure and saturation calculated by the nonlinear mathematical model were in line with the actual situations of the stratum; the fracture flow conductivity of injection well in the fractured five-spot well pattern decreased with the formation closure, which led to poor water injection effect and low oil well production. Thus, the fracture design should be modified in accordance with the study’s results. The study results indicated that the nonlinear mathematical model and hydraulic fracture coupling could accurately describe the nonlinear relationship between flow velocity and pressure gradient in low-permeability reservoir. This breakthrough establishes a foundation to calculate the production of fractured well group in low-permeability reservoir accurately, and provides a guidance for water flooding development of low permeability reservoir.

  • [1]
    宋付权,刘慈群. 含启动压力梯度油藏的两相渗流分析[J]. 石油大学学报(自然科学版), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014

    SONG Fuquan, LIU Ciqun. Analysis of two-phase fluid flow in low permeability reservoir with the threshold pressure gradient[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014
    [2]
    程时清, 陈明卓. 油水两相低速非达西渗流数值模拟[J]. 石油勘探与开发, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012

    CHENG Shiqing, CHEN Mingzhuo. Numerical simulation of oil-water low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012
    [3]
    周涌沂,彭仕宓,李允,等. 低速非达西渗流的全隐式模拟模型[J]. 石油勘探与开发, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024

    ZHOU Yongyi, PENG Shimi, LI Yun, et al. Fully implicit simulation model for low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024
    [4]
    尹芝林,孙文静,姚军. 动态渗透率三维油水两相低渗透油藏数值模拟[J]. 石油学报, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020

    YIN Zhilin, SUN Wenjing, YAO Jun. Numerical simulation of the 3D oil-water phase dynamic permeability for low-permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020
    [5]
    吕广忠,鞠斌山,栾志安. 油藏水力压裂区域分解模拟算法[J]. 石油大学学报(自然科学版), 1998, 22(5): 61–63.

    LYU Guangzhong, JU Binshan, LUAN Zhian. Domain decomposition simulation method for hydraulic fracturing area of reservoir[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998, 22(5): 61–63.
    [6]
    苏玉亮,王霞,李涛,等. 人工裂缝对低渗透油田开发的影响研究[J]. 钻采工艺, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011

    SU Yuliang, WANG Xia, LI Tao, et al. Influence of created fracture on low permeability reservoir development[J]. Drilling & Production Technology, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011
    [7]
    何勇明,孙尚如,徐荣伍, 等. 低渗透油藏污染井压裂增产率预测模型及敏感性分析[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016

    HE Yongming, SUN Shangru, XU Rongwu, et al. Prediction model for fracturing incremental recovery of damaged well in low-permeability reservoir and sensitivity analysis[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016
    [8]
    BELHAJ H A, AGHA K R, NOURI A M, et al. Numerical modeling of Forchheimer’s equation to describe darcy and non-Darcy flow in porous media[R]. SPE 80440, 2003.
    [9]
    SOLIMAN M Y. Numerical model estimates fracture production increase[J]. Oil and Gas, 1986, 84(41): 70–74.
    [10]
    温庆志,张士诚,王秀宇,等. 支撑裂缝长期导流能力数值计算[J]. 石油钻采工艺, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020

    WEN Qingzhi, ZHANG Shicheng, WANG Xiuyu, et al. Numerical calculation of long - term conductivity of propping fractures[J]. Oil Drilling & Production Technology, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020
    [11]
    任勇,郭建春,赵金洲,等. 压裂井裂缝导流能力研究[J]. 河南石油, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017

    REN Yong, GUO Jianchun, ZHAO Jinzhou, et al. A study on flow conductivity of fractures in a fractured well[J]. Henan Petroleum, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017
    [12]
    胥元刚,张琪. 变裂缝导流能力下水力压裂整体优化设计方法[J]. 大庆石油地质与开发, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014

    XU Yuangang, ZHANG Qi. Overall optimizing designation method for hydraulic fracturing under variable fracture diverting capacity[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014
    [13]
    孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 1999: 76–77.

    KONG Xiangyan. Advanced seepage mechanics[M]. Hefei: Press of University of Science and Technology of China, 1999: 76–77.
    [14]
    李淑霞, 谷建伟.油藏数值模拟基础[M].东营: 中国石油大学出版社, 2009: 97–101.

    LI Shuxia, GU Jianwei. Fundamentals of numerical reservoir simulation[M]. Dongying: China University of Petroleum Press, 2008: 97–101.
    [15]
    戴嘉尊, 邱建贤.微分方程数值解法[M].南京: 东南大学出版社, 2002.

    DAI Jiazun, QIU Jianxian. Numerical solutions for differential equations[M]. Nanjing: Southeast University Press, 2002.
    [16]
    张建国, 雷光伦.油气层渗流力学[M].东营: 石油大学出版社, 1998: 46–47.

    ZHANG Jianguo, LEI Guanglun. Seepage mechanics of oil and gas reservoir[M]. Dongying: Petroleum University Press, 1998: 46–47.
  • Related Articles

    [1]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [2]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [3]LI Xiaoyi, AI Shuang, CHENG Guangming, ZHANG Jie, WU Junxia. Numerical Simulation of Fishbone Flexible Pipes in Fractured Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2017, 45(3): 102-106. DOI: 10.11911/syztjs.201703018
    [4]YANG Jinhui, LI Li, LI Zhongyang, JU Binshan. Numerical Simulation on the Effects of Slippage and Stress Sensibility on the Performance of Shale Gas Development[J]. Petroleum Drilling Techniques, 2017, 45(1): 83-90. DOI: 10.11911/syztjs.201701015
    [5]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [6]Bian Xiaobing, Jiang Tingxue, Jia Changgui, Li Shuangming, Wang Lei. Production Prediction of Fractured Horizontal Well in Shale Gas Reservoirs Considering Long-Term Flow Conductivity[J]. Petroleum Drilling Techniques, 2014, 42(5): 37-41. DOI: 10.11911/syztjs.201405006
    [7]Song Xianzhi, Li Gensheng, Wang Mengshu, Yi Can, Su Xinliang. Numerical Simulation on Cuttings Carrying Regularity for Horizontal Wells Drilled with Coiled Tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28-32. DOI: 10.3969/j.issn.1001-0890.2014.02.006
    [8]Nie Xiangrong, Yang Shenglai. Numerical Simulation of Cooling Damage to High Pour-Point Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(1): 100-104. DOI: 10.3969/j.issn.1001-0890.2014.01.020
    [9]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [10]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005

Catalog

    Article Metrics

    Article views (1225) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return