FAN Fan, LIU Wei, JIA Jun. Clay-Free Drilling Fluid with Anti-Water Locking and Low Damage Performance Used in the Changbei Block[J]. Petroleum Drilling Techniques, 2019, 47(5): 34-39. DOI: 10.11911/syztjs.2019104
Citation: FAN Fan, LIU Wei, JIA Jun. Clay-Free Drilling Fluid with Anti-Water Locking and Low Damage Performance Used in the Changbei Block[J]. Petroleum Drilling Techniques, 2019, 47(5): 34-39. DOI: 10.11911/syztjs.2019104

Clay-Free Drilling Fluid with Anti-Water Locking and Low Damage Performance Used in the Changbei Block

More Information
  • Received Date: January 23, 2019
  • Revised Date: August 16, 2019
  • Available Online: September 05, 2019
  • Continuous mass production of wells in Changbei Block has led to formation pressure attenuation, differential pressure increase and formation damage by drilling fluids. Therefore, the damage mechanism of reservoir has been studied. After doing so, the G311 water-locking removal agent and other agents were implemented, so as to form a clay-free drilling fluid with anti-water locking and lower damage performance, and it is suitable for the Changbei Block depleted reservoir. Compared with the clay-free low damage drilling fluid, its filtrate has a surface tension reduction rate of 77.8%, a linear expansion rate of 22.6%, and a core damage rate of lower than 15.0%. It has the advantage of water-locking removal, water sensitivity inhibition and remarkable reservoir protection effect. The new drilling fluid has been tested in 2 wells of the Changbei Phase II project, and no downhole failure occurred during the drilling process. The trip operation was smooth, and the wellbore maintained a well cleaned state. Among them, the average ROP of Well CX-5 increased by 12.1%, the open hole completion and direct gas lifting production were used in this well, and the production reached 70×104 m3/d, higher than the expected gas production. The research results showed that the clay-free drilling fluid with anti-water locking and lower damage performance could meet the requirement of drilling safety and reservoir protection, suitable for long horizontal section drilling in pressure attenuated formation of Changbei Phase II.

  • [1]
    赵向阳,张小平,陈磊,等. 甲酸盐钻井液在长北区块的应用[J]. 石油钻探技术, 2013, 41(1): 40–44. doi: 10.3969/j.issn.1001-0890.2013.01.008

    ZHAO Xiangyang, ZHANG Xiaoping, CHEN Lei, et al. Application of formate drilling fluid in Changbei Block[J]. Petroleum Drilling Techniques, 2013, 41(1): 40–44. doi: 10.3969/j.issn.1001-0890.2013.01.008
    [2]
    崔贵涛,林海,董海东,等. NDW无土相低伤害储层钻井液在CB8-3井的应用[J]. 石油钻采工艺, 2012, 34(5): 39–41.

    CUI Guitao, LIN Hai, DONG Haidong, et al. Application of NDW clay-free low damage drilling fluid on Well CB8-3[J]. Oil Drilling & Production Technology, 2012, 34(5): 39–41.
    [3]
    贾俊,赵向阳,刘伟. 长庆油田水基环保成膜钻井液研究与现场试验[J]. 石油钻探技术, 2017, 45(5): 36–42.

    JIA Jun, ZHAO Xiangyang, LIU Wei. Research and field test of water-based environmental- friendly membrane forming drilling fluid technology in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(5): 36–42.
    [4]
    黎金明,杨斌,陈在君,等. 鄂尔多斯盆地长北气田储层保护技术[J]. 天然气工业, 2009, 29(3): 68–70. doi: 10.3787/j.issn.1000-0976.2009.03.019

    LI Jinming, YANG Bin, CHEN Zaijun, et al. Reservoir protection technology in the Changbei Gas Field, Ordos Basin[J]. Natural Gas Industry, 2009, 29(3): 68–70. doi: 10.3787/j.issn.1000-0976.2009.03.019
    [5]
    金祥哲,王长宁,杨斌. 长北气田水平井钻井液润滑剂的优选与应用[J]. 天然气工业, 2009, 29(4): 61–63.

    JIN Xiangzhe, WANG Changning, YANG Bin. Selection and application of drilling fluid lubricant for horizontal wells in the Changbei Gas Field[J]. Natural Gas Industry, 2009, 29(4): 61–63.
    [6]
    向雄,杨洪烈,刘喜亮,等. 南海西部超浅层气田水平井EZFLOW无固相弱凝胶钻井液研究与应用[J]. 石油钻探技术, 2018, 46(2): 38–43.

    XIANG Xiong, YANG Honglie, LIU Xiliang, et al. Research and application of EZFLOW solid-free weak gel drilling fluid in horizontal wells in shallow gas fields in the Western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38–43.
    [7]
    陈在君,黎金明,杨斌,等. 长北气田长水平井段裸眼钻井(完井)液技术[J]. 天然气工业, 2007, 27(11): 49–51. doi: 10.3321/j.issn:1000-0976.2007.11.014

    CHEN Zaijun, LI Jinming, YANG Bin, et al. Drilling and completion fluid technology for long horizontal openhole completion in Changbei Gas Field[J]. Natural Gas Industry, 2007, 27(11): 49–51. doi: 10.3321/j.issn:1000-0976.2007.11.014
    [8]
    郭永宾,管申,刘智勤,等. 涠洲12-1油田水平井无固相有机盐钻井液技术[J]. 石油钻探技术, 2017, 45(6): 31–36.

    GUO Yongbin, GUAN Shen, LIU Zhiqin, et al. Solid-free organic salt drilling fluid for horizontal wells in the Weizhou 12-1 Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 31–36.
    [9]
    蒋官澄,王晓军,关键,等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69–73. doi: 10.3969/j.issn.1001-0890.2012.01.014

    JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73. doi: 10.3969/j.issn.1001-0890.2012.01.014
    [10]
    李洪,李治平,王香增,等. 表面活性剂对低渗透油藏渗吸敏感因素的影响[J]. 石油钻探技术, 2016, 44(5): 100–103.

    LI Hong, LI Zhiping, WANG Xiangzeng, et al. The effect of surfactants on imbibition-sensitive factors of low-permeability reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(5): 100–103.
    [11]
    董宏伟,贾俊,凡帆,等. 解除低渗砂岩气层钻井液伤害的洗井液研究与应用[J]. 钻井液与完井液, 2015, 32(4): 40–44. doi: 10.3969/j.issn.1001-5620.2015.04.011

    DONG Hongwei, JIA Jun, FAN Fan, et al. Flushing fluid eliminating damage to low permeability sandstone gas reservoir by drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 40–44. doi: 10.3969/j.issn.1001-5620.2015.04.011
    [12]
    董兵强,邱正松,陆朝晖,等. 临兴区块致密砂岩气储层损害机理及钻井液优化[J]. 钻井液与完井液, 2018, 35(6): 65–70. doi: 10.3969/j.issn.1001-5620.2018.06.012

    DONG Bingqiang, QIU Zhengsong, LU Zhaohui, et al. Damage mechanisms determination for tight sands gas reservoir in Block Linxing and drill-in fluid optimization for protection of the reservoir[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 65–70. doi: 10.3969/j.issn.1001-5620.2018.06.012
    [13]
    蒋官澄,张志行,张弘. KCl聚合物钻井液防水锁性能优化研究[J]. 石油钻探技术, 2013, 41(4): 59–63. doi: 10.3969/j.issn.1001-0890.2013.04.013

    JIANG Guancheng, ZHANG Zhihang, ZHANG Hong. Anti-water lock optimization of KCl polymer drilling fluid[J]. Petroleum Drilling Techniques, 2013, 41(4): 59–63. doi: 10.3969/j.issn.1001-0890.2013.04.013
    [14]
    韩成,黄凯文,韦龙贵,等. 海上低渗储层防水锁强封堵钻井液技术[J]. 钻井液与完井液, 2018, 35(5): 67–71. doi: 10.3969/j.issn.1001-5620.2018.05.013

    HAN Cheng, HUANG Kaiwen, WEI Longgui, et al. A drilling fluid with water block preventive capacity and strong plugging capacity for offshore low permeability reservoir drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 67–71. doi: 10.3969/j.issn.1001-5620.2018.05.013
    [15]
    耿学礼,吴智文,黄毓祥,等. 低渗储层新型防水锁剂的研究及应用[J]. 断块油气田, 2019, 26(4): 537–540.

    GENG Xueli, WU Zhiwen, HUANG Yuxiang, et al. Research and application of new waterproof locking agent for low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 537–540.
    [16]
    陈二丁,赵洪涛,李秀灵,等. 用于滩坝砂低渗透油藏的复合盐低伤害钻井液技术[J]. 钻井液与完井液, 2018, 35(4): 66–72. doi: 10.3969/j.issn.1001-5620.2018.04.012

    CHEN Erding, ZHAO Hongtao, LI Xiuling, et al. Low damage compound salt drilling fluid for low permeability beach bar sand reservoirs[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 66–72. doi: 10.3969/j.issn.1001-5620.2018.04.012
    [17]
    黄维安,雷明,滕学清,等. 致密砂岩气藏损害机理及低损害钻井液优化[J]. 钻井液与完井液, 2018, 35(4): 33–38. doi: 10.3969/j.issn.1001-5620.2018.04.006

    HUANG Weian, LEI Ming, TENG Xueqing, et al. Damaging mechanism of tight sandstone gas reservoirs and optimization of drilling fluids for reservoir protection[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 33–38. doi: 10.3969/j.issn.1001-5620.2018.04.006
    [18]
    唐洪明,徐诗雨,王茜,等. 克拉苏气田超致密砂岩气储层水锁损害[J]. 断块油气田, 2017, 24(4): 541–545.

    TANG Hongming, XU Shiyu, WANG Xi, et al. Water blocking damage of hyper-tight sandstone gas reservoir in Kelasu Gas Field[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 541–545.
  • Related Articles

    [1]LAI Jianqiang, LU Gang, ZHOU Chao, LU Tianqi. Numerical Integral Calculation in Borehole Trajectory Model[J]. Petroleum Drilling Techniques, 2023, 51(3): 45-50. DOI: 10.11911/syztjs.2023004
    [2]ZHU Guanghai, LIU Zhangcong, XIONG Xudong, SONG Xuncheng, WANG Junheng, WENG Bo. Numerical Calculation Method of the Wellbore Temperature Field for Electric Heating Heavy Oil Thermal Recovery[J]. Petroleum Drilling Techniques, 2019, 47(5): 110-115. DOI: 10.11911/syztjs.2019109
    [3]XIA Hongquan, HU Hui, YANG Lin, ZHAO Jing. Meathod about Improving Accuracy of Fracture Fluid Friction Pressure[J]. Petroleum Drilling Techniques, 2017, 45(5): 113-117. DOI: 10.11911/syztjs.201705020
    [4]YUAN Haiping, TAO Changzhou, GAO Yan, XIA Yulei. A Method to Improve the Accuracy of Friction Calculations for HPG Fracturing Fluid[J]. Petroleum Drilling Techniques, 2017, 45(5): 108-112. DOI: 10.11911/syztjs.201705019
    [5]YANG Zhen, XIAO Hongbing, LI Cui. Impacts of Accuracy of Azimuthal Electromagnetic Logging-while-Drilling on Resistivity and Interface Prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115-120. DOI: 10.11911/syztjs.201704020
    [6]Lu Gang, Chen Chongbin. Analytic Solution the Design Problem of a Hyperboloidal Arch Type Trajectory of Equal Curvature for Step-Horizontal Hole Sections[J]. Petroleum Drilling Techniques, 2014, 42(6): 13-17. DOI: 10.11911/syztjs.201406003
    [7]Li Longlong, Wu Minglu, Yao Jun, Li Yang, Li Xiaoxue. Calculation Method of the Productivity of Partially Perforated Vertical Well[J]. Petroleum Drilling Techniques, 2014, 42(3): 80-89. DOI: 10.3969/j.issn.1001-0890.2014.03.016
    [8]Lu Gang. Quasi-Analytic Solution Theory for Arc Type Well Trajectory Design[J]. Petroleum Drilling Techniques, 2014, 42(1): 26-32. DOI: 10.3969/j.issn.1001-0890.2014.01.005
    [9]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
    [10]Diao Binbin, Gao Deli. Calculation Method of Adjacent Well Oriented Separation Factors[J]. Petroleum Drilling Techniques, 2012, 40(1): 22-27. DOI: 10.3969/j.issn.1001-0890.2012.01.005
  • Cited by

    Periodical cited type(21)

    1. 孙菁. C26区块优快钻井技术研究与应用. 石化技术. 2025(02): 115-117 .
    2. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 .
    3. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 .
    4. 高斐,何云,董淼,刘云鹏,张艳. 一种新型双季铵盐页岩抑制剂的制备及其作用机理. 中国科技论文. 2023(06): 694-698 .
    5. 孙翀,周定照,王涛,邢希金,崔应中,向兴国. YH7井钻井液煤层井壁稳定技术研究及应用. 石油化工应用. 2023(05): 20-22 .
    6. 李勇尚,马诚,杨超,王晨,周成华,张珍. 聚合物微球封堵防塌剂的制备与性能评价. 精细石油化工. 2023(04): 13-17 .
    7. 赵春雨,申超,张蕾,曲学超,刘佩. 水基钻井液用CaCO_3/PAA纳米颗粒的制备及性能研究. 当代化工. 2022(04): 810-814 .
    8. 马少强. 泥页岩地层油基钻井液封堵防塌技术研究与应用. 西部探矿工程. 2022(06): 43-45 .
    9. 庄艳君,肖林通,于雷,邱春阳. 丁页10井水平井钻井液技术. 四川化工. 2022(06): 37-40 .
    10. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
    11. 杨洪烈,可点,吴宇,周书胜,周姗姗. 一种油基钻井液用降滤失剂室内研究. 当代化工. 2020(01): 99-102+106 .
    12. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 .
    13. 魏然,刘成杰. BZ34-5油田复杂地层低效井治理工艺技术. 探矿工程(岩土钻掘工程). 2019(06): 47-52 .
    14. 黄熠,胜亚楠,管志川,罗鸣,李文拓,邓文彪. 莺琼盆地钻井井壁稳定性定量风险评价. 断块油气田. 2019(03): 380-384 .
    15. 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术. 石油钻探技术. 2019(03): 113-120 . 本站查看
    16. 许杰,何瑞兵,谢涛,胡进军,崔应中. 钻井液水驱动力调控技术研究. 石油化工应用. 2019(09): 44-47 .
    17. 田月昕,黄进军,郭星波,沈景原,李春霞. 纳米封堵剂Fe_3O_4性能评价与机理探究. 化学世界. 2018(07): 440-447 .
    18. 于雷,张敬辉,李公让,赵怀珍,刘天科. 低活度强抑制封堵钻井液研究与应用. 石油钻探技术. 2018(01): 44-48 . 本站查看
    19. 洪国斌,陈勉,卢运虎,金衍. 川南深层页岩各向异性特征及对破裂压力的影响. 石油钻探技术. 2018(03): 78-85 . 本站查看
    20. 王平全,王建龙,白杨,邓嘉丁,青胜兰. 新型水基钻井液在延长油田页岩气水平井的应用. 石油与天然气化工. 2018(05): 79-84 .
    21. 吴若宁,熊汉桥,苏晓明,朱杰,孙运昌,王启任. 成膜封堵技术室内实验研究. 油气藏评价与开发. 2018(06): 57-61+69 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return