Lu Gang. Quasi-Analytic Solution Theory for Arc Type Well Trajectory Design[J]. Petroleum Drilling Techniques, 2014, 42(1): 26-32. DOI: 10.3969/j.issn.1001-0890.2014.01.005
Citation: Lu Gang. Quasi-Analytic Solution Theory for Arc Type Well Trajectory Design[J]. Petroleum Drilling Techniques, 2014, 42(1): 26-32. DOI: 10.3969/j.issn.1001-0890.2014.01.005

Quasi-Analytic Solution Theory for Arc Type Well Trajectory Design

More Information
  • Received Date: March 20, 2013
  • Revised Date: December 16, 2013
  • To solve the system of multivariate nonlinear equations in well trajectory design quickly and reliably,the analytical solving method for the system of equations has been studied.Based on the theory and techniques of the mathematics and mechanics,a complete theoretical system of quasi-analytical solutions was created through complex mathematical formula derivation.It was proved theoretically that a characteristic polynomial containing only one unknown can be derived from the design equations,and all unknowns in designed equations can be calculated in sequence by all real roots of the characteristic polynomial and a group of analytical formula.The theoretical analysis and practical calculation showed that the quasi-analytical method can determine whether the system of equations are solvable,and calculate the solutions in the cases of the system of equations that have a unique solution or more.The quasi-analytical solution method completely overcomes inherent defects of numerical iteration methods such as initial dependence,convergence,and inability to solve multiple solutions etc.Its accuracy only depends on all real roots of characteristic polynomial,being an exact algorithm.The results showed that proposed method is a fast,reliable and accurate computing technique to solve the system of design equations.It is not only a theoretical innovation in algorithm research,but also has an important practical value in drilling software development.
  • [1]
    韩志勇.定向钻井设计与计算[M].东营:中国石油大学出版社, 2007:111-117. Han Zhiyong.Design and calculation of directional drilling[M].Dongying:China University of Petroleum Press, 2007:111-117.
    [2]
    鲁港, 邢玉德, 佟长海.基于约束优化方法的三维多靶井眼轨迹设计模型[J].石油学报, 2005, 26(6):93-95. Lu Gang, Xing Yude, Tong Changhai.A model for design of three-dimensional multi-target wellboore trajectory based on restricted optimization[J].Acta Petrolei Sinica, 2005:26(6): 93-95.
    [3]
    刘修善, 石在虹.给定井眼方向的修正轨道设计方法[J].石油学报, 2002, 23(2):72-76. Liu Xiushan, Shi Zaihong.A new method of path-correction planning with the desired direction[J].Acta Petrolei Sinica, 2002, 23(2):72-76.
    [4]
    刘修善, 何树山.井眼轨道的软着陆设计模型及其应用[J].天然气工业, 2002, 22(2):43-45. Liu Xiushan, He Shushan.Well-path soft landing design model and it’s application[J].Natural Gas Industry, 2002, 22(2): 43-45.
    [5]
    唐雪平, 苏义脑, 陈祖锡.三维井眼轨道设计模型及其精确解[J].石油学报, 2003, 24(4):90-93. Tang Xueping, Su Yinao, Chen Zuxi.Three-dimensional well-path planning model and its exact solution[J].Acta Petrolei Sinica, 2003, 24(4):90-93.
    [6]
    黄根炉, 赵金海, 赵金洲, 等.限定目标点井眼方向待钻轨道设计新方法[J].石油钻采工艺, 2006, 28(1):19-22. Huang Genlu, Zhao Jinhai, Zhao Jinzhou, et al.New method for hole trajectory design with a required direction at target[J].Oil Drilling Production Technology, 2006, 28(1): 19-22.
    [7]
    冯果忱.非线性方程组迭代解法[M].上海:上海科学技术出版社, 1989:112-172. Feng Guochen.Iterative solution of nonlinear equations[M].Shanghai:Shanghai Science and Technology Press, 1989: 112-172.
    [8]
    鲁港, 余雷, 夏泊洢, 等.三维井眼轨道设计模型及其拟解析解//苏义脑.2010年钻井基础理论研究与前沿技术开发新进展[C].北京:石油工业出版社, 2012:137-146. Lu Gang, Yu Lei, Xia Boyi, et al.The 3D well-path planning model and it’s quasi-analytic solutions//Su Yinao.New progress in basic research and cutting-edge technology development drilling on 2010[C].Beijing:Petroleum Industry Press, 2012: 137-146.
    [9]
    鲁港.限定井眼方向待钻轨道设计的代数法[J].西南石油大学学报:自然科学版, 2009, 31(5):158-162. Lu Gang.An algebraic method of borehole trajectory design with defined borehole direction[J].Journal of Southwest Petroleum University:Science Technology Edition, 2009, 31(5):158-162.
    [10]
    方敏, 鲁港, 王立波.三维圆弧型井眼轨道模型的完全解[J].同济大学学报:自然科学版, 2009, 37(3):317-321. Fang Min, Lu Gang, Wang Libo.All solutions of 3D arc-typed well-path planning model[J].Journal of Tongji University:Natural Science, 2009, 37(3):317-321.
    [11]
    鲁港, 巩小明, 曹传文, 等.限定入靶井斜的双圆弧型纠偏轨道设计问题的全解[J].石油天然气学报, 2009, 31(1):75-79, 99. Lu Gang, Gong Xiaoming, Cao Chuanwen, et al.All solutions to dual arc correcting trajectory design with restricted target-entering deviation[J].Journal of Oil and Gas Technology, 2009, 31(1):75-79, 99.
    [12]
    刘乃震, 鲁港, 佟长海.限定入靶方位的双圆弧型纠偏轨道设计问题的全解[J].石油地质与工程, 2010, 24(1):94-97. Liu Naizhen, Lu Gang, Tong Changhai.All solutions to dual arc correcting trajectory design with restricted target-entering azimuth[J].Petroleum Geology and Engineering, 2010, 24(1):94-97.
    [13]
    鲁港.定向井轨道设计参数谱集理论探索[J].石油钻探技术, 2012, 40(5):7-12. Lu Gang.The spectral theory for parameters design of directional well trajectory[J].Petroleum Drilling Techniques, 2012, 40(5):7-12.
    [14]
    吴文俊.数学机械化[M].北京:科学出版社, 2003:210-229. Wu Wenjun.Mathematics mechanization[M].Beijing:Science Press, 2003:210-229.
    [15]
    陆征一, 何碧, 罗勇.多项式系统的实根分离算法及其应用[M].北京:科学出版社, 2004:34-55. Lu Zhengyi, He Bi, Luo Yong.The real roots separation algorithms of the polynomial system and its application[M].Beijing:Science Press, 2004:34-55.
    [16]
    高小山, 王定康, 裘宗燕, 等.方程求解与机器证明[M].北京:科学出版社, 2006:143-195. Gao Xiaoshan, Wang Dingkang, Qiu Zongyan, et al.Equation solving and machine proving[M].Beijing:Science Press, 2006:143-195.
  • Cited by

    Periodical cited type(2)

    1. 简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 . 本站查看
    2. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3317) PDF downloads (3683) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return