JIAN Xu, LI Gao, WANG Jun, et al. Evaluation and optimization of acoustic sources for advanced detection near drill bits in gas drilling [J]. Petroleum Drilling Techniques, 2025, 53(1):41−48. DOI: 10.11911/syztjs.2025006
Citation: JIAN Xu, LI Gao, WANG Jun, et al. Evaluation and optimization of acoustic sources for advanced detection near drill bits in gas drilling [J]. Petroleum Drilling Techniques, 2025, 53(1):41−48. DOI: 10.11911/syztjs.2025006

Evaluation and Optimization of Acoustic Sources for Advanced Detection nearDrill Bits in Gas Drilling

More Information
  • Received Date: July 04, 2023
  • Revised Date: January 05, 2025
  • Available Online: January 16, 2025
  • To optimize the acoustic sources for advanced detection near drill bits in gas drilling environments, a near-bit acoustic ranging method was proposed. This method is specifically tailored for gas drilling conditions. Experiments were conducted on ultrasonic ranging, impact echo resonance ranging, sweep-frequency acoustic resonance ranging, and impact reflection wave ranging at various detection distances. The feasibility of these four types of acoustic sources for ranging was evaluated. The near-bit acoustic source suitable for gas drilling was optimized based on three factors: acoustic source characteristics, detection distance, and resolution. Experimental results indicate that when the ultrasound frequency is low and the tail wave is short, the reflected wave signal can be identified in the waveform received close to the acoustic wave emission source, but the detection range is limited. The frequency of the impact echo is highly influenced by lithology, which prevents the formation of an ideal standing wave between the incident and reflected waves, leading to significant errors in resonance ranging. The incident and reflected waves generated by sweep-frequency acoustic sources form relatively ideal standing waves, resulting in smaller ranging errors. However, this requires high low-frequency performance of the sweep-frequency generator. The preferred impact source can effectively detect lithological interfaces, and its tail wave experiences significant attenuation, which is beneficial for identifying reflected wave signals from the formation in the time domain. The results show that the preferred impact source offers advantages such as strong impact energy, low frequency, and short tail wave, which meet the acoustic source requirements for advanced detection under gas drilling conditions.

  • [1]
    胡万俊,夏文鹤,李永杰,等. 气体钻井随钻安全风险智能识别方法[J]. 石油勘探与开发,2022,49(2):377–384. doi: 10.11698/PED.2022.02.16

    HU Wanjun, XIA Wenhe, LI Yongjie, et al. An intelligent identification method of safety risk while drilling in gas drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 377–384. doi: 10.11698/PED.2022.02.16
    [2]
    孟英峰,吴苏江,陈星元,等. 邛崃1井氮气钻井事故分析(Ⅰ):构成事故的重要事件[J]. 天然气工业,2015,35(10):125–134. doi: 10.3787/j.issn.1000-0976.2015.10.017

    MENG Yingfeng, WU Sujiang, CHEN Xingyuan, et al. Analysis on the nitrogen drilling accident of Well Qionglai 1, western Sichuan Basin (Ⅰ): major inducement events[J]. Natural Gas Industry, 2015, 35(10): 125–134. doi: 10.3787/j.issn.1000-0976.2015.10.017
    [3]
    孟英峰,吴苏江,陈星元,等. 邛崃1井氮气钻井事故分析(Ⅱ):事故过程的还原及教训[J]. 天然气工业,2015,35(10):135–144. doi: 10.3787/j.issn.1000-0976.2015.10.018

    MENG Yingfeng, WU Sujiang, CHEN Xingyuan, et al. Analysis on the nitrogen drilling accident of Well Qionglai 1, western Sichuan Basin (Ⅱ): restore of accident process and lessons to learn[J]. Natural Gas Industry, 2015, 35(10): 135–144. doi: 10.3787/j.issn.1000-0976.2015.10.018
    [4]
    张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术,2023,51(2):37–45. doi: 10.11911/syztjs.2022094

    ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37–45. doi: 10.11911/syztjs.2022094
    [5]
    叶金龙,沈建文,吴玉君,等. 川深1井超深井钻井提速关键技术[J]. 石油钻探技术,2019,47(3):121–126. doi: 10.11911/syztjs.2019056

    YE Jinlong, SHEN Jianwen, WU Yujun, et al. Key techniques of drilling penetration rate improvement in ultra-deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121–126. doi: 10.11911/syztjs.2019056
    [6]
    陈烨,闫铁,孙晓峰,等. 气体钻井地层出水量与钻具黏卡风险预测模型[J]. 断块油气田,2015,22(6):807–811.

    CHEN Ye, YAN Tie, SUN Xiaofeng, et al. Formation water production and risk prediction model of stuck pipe during gas drilling[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 807–811.
    [7]
    侯杰,刘永贵,李海. 气体钻井井眼干燥技术及携水模拟装置的研制[J]. 钻井液与完井液,2015,32(4):32–36.

    HOU Jie, LIU Yonggui, LI Hai. Development of Testing device simulating drying of hole and water carrying in air drilling[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 32–36.
    [8]
    祝效华, 刘骉, 门宏建,等. 气体钻井岩屑遇水黏附现象与对策研究[J]. 特种油气藏,2018,25(4):143–148.

    ZHU Xiaohua ,LIU Biao ,MEN Hongjian, et al. Adhesion of cuttings during gas drilling and counter-measures[J]. Special Oil & Gas Reservoir, 2018, 25(4): 143–148.
    [9]
    李露春,练章华,蒲克勇,等. 气体连续循环钻井技术在博孜区块砾石层的应用[J]. 西南石油大学学报(自然科学报),2021,43(4):44–50.

    LI Luchun, LIAN Zhanghua, PU Keyong, et al. Application of gas continuous circulation drilling technolgy ingravel layer in Bozi Block[J]. Journal of Soutjwest Petroleum University(Science & Techonlogy), 2021, 43(4): 44–50.
    [10]
    汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11. doi: 10.3969/j.issn.1672-7703.2023.03.001

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11. doi: 10.3969/j.issn.1672-7703.2023.03.001
    [11]
    熊战,何悦峰,张闯,等. 青海油田深探井优快钻井关键技术[J]. 石油钻采工艺,2021,43(6):698–704.

    XIONG Zhan, HE Yuefeng, ZHANG Chuang, et al. Key technologies for optimized fast drilling of deep exploration wells in Qinghai Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(6): 698–704.
    [12]
    邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94. doi: 10.3787/j.issn.1000-0976.2022.12.009

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: Current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94. doi: 10.3787/j.issn.1000-0976.2022.12.009
    [13]
    陈超峰,刘新宇,李雪彬,等. 准噶尔盆地呼探1井高温高压超深井试油测试技术[J]. 石油钻采工艺,2023,45(4):447–454.

    CHEN Chaofeng, LIU Xinyu, et al. High-temperature, high-pressure & ultra-deep well testing technology used in Well Hutan 1 in tha Junggar Basin[J]. Oil Drilling & Production Technology, 2023, 45(4): 447–454.
    [14]
    杨书博,乔文孝,赵琪琪,等. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术,2021,49(2):113–120. doi: 10.11911/syztjs.2021020

    YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, et al. The characteristics of the acoustic field ahead of the bit in “look-ahead” acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113–120. doi: 10.11911/syztjs.2021020
    [15]
    喻著成,许期聪,邱儒义,等. 随钻声波井下全景成像技术现状及展望[J]. 钻采工艺,2023,46(3):171–175. doi: 10.3969/J.ISSN.1006-768X.2023.03.29

    YU Zhucheng, XU Qicong, QIU Ruyi, et al. Status and prospect of borehole panoramic imaging while drilling based on acoustic wave[J]. Drilling & Production Technology, 2023, 46(3): 171–175. doi: 10.3969/J.ISSN.1006-768X.2023.03.29
    [16]
    CONSTABLE M V, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: From vision to reality[J]. Petrophysics, 2016, 57(5): 426–446.
    [17]
    ARATA F, MELE M, TARCHIANI C, et al. Look ahead geosteering via real time integration of logging while drilling measurements with surface seismic[R]. SPE 187203, 2017.
    [18]
    MAACK S, KÜTTENBAUM S, BÜHLING B, et al. Low frequency ultrasonic pulse-echo datasets for object detection and thickness measurement in concrete specimens as testing tasks in civil engineering[J]. Data in Brief, 2023, 48: 109233.
    [19]
    霍超. 超声波探伤技术在钻具失效分析中的应用研究[D]. 大庆:东北石油大学,2017.

    HUO Chao. Application of ultrasonic flaw detection technology in failure analysis of drilling tools[D]. Daqing: Northeast Petroleum University, 2017.
    [20]
    李戈,孟祥杰,王晓华,等. 国内超声波测距研究应用现状[J]. 测绘科学,2011,36(4):60–62.

    LI Ge, MENG Xiangjie, WANG Xiaohua, et al. Research and application status on domestic ultrasonic ranging[J]. Science of Surveying and Mapping, 2011, 36(4): 60–62.
    [21]
    SADRI A. Application of impact-echo technique in diagnoses and repair of stone Masonry structures[J]. NDT & E International, 2003, 36(4): 195–202.
    [22]
    HELLWIG O, BOHLEN T. Prediction ahead of the bit using borehole guided waves[R]. SEG 2008-0353, 2008.
    [23]
    朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40. doi: 10.11911/syztjs.2022113

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40. doi: 10.11911/syztjs.2022113
    [24]
    简旭,李皋,王军,等. 气体钻井声波超前测距方法与数值模拟[J]. 石油钻探技术,2022,50(3):132–138. doi: 10.11911/syztjs.2022016

    JIAN Xu, LI Gao, WANG Jun, et al. Acoustic advance ranging method in gas drilling and its numerical simulation[J]. Petroleum Drilling Techniques, 2022, 50(3): 132–138. doi: 10.11911/syztjs.2022016
    [25]
    李皋,黎洪志,简旭,等. 气体钻井超前探测震源工具设计及力学性能模拟研究[J]. 石油钻探技术,2022,50(6):14–20. doi: 10.11911/syztjs.2022112

    LI Gao, LI Hongzhi, JIAN Xu, et al. Design and mechanical property simulation of a impact source tool for the advanced detection of gas drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 14–20. doi: 10.11911/syztjs.2022112
    [26]
    SUGIMURA Y, MASUKAWA T, YONEZAWA T, et al. Development for acoustic sensing system ahead of the bit for detection of abnormally high-pressured formation[R]. SPE 56700, 1999.
  • Related Articles

    [1]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [2]TANG Ming, QI Xin, CAI Peng, WU Liugen. Development and Test of a MonoHole Expandable Casing System[J]. Petroleum Drilling Techniques, 2023, 51(1): 45-50. DOI: 10.11911/syztjs.2022030
    [3]YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034
    [4]LIU Xien, SUN Zhifeng, QIU Ao, LI Jie, LUO Bo, PENG Kaixuan, LUO Yulin. Design and Experiment for a Quadrupole Acoustic LWD Tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125-131. DOI: 10.11911/syztjs.2022058
    [5]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [6]LI Zhiyong, CHEN Shuai, TAO Ye, MA Pan, YANG Chao. Experimental Study on High Strength Anti-H2S Gel Valves[J]. Petroleum Drilling Techniques, 2016, 44(2): 65-69. DOI: 10.11911/syztjs.201602011
    [7]Qian Kun, Yang Shenglai, Dong Junchang, Liu Hui, Liu Pan. A Study of Asphaltene Onset Pressure during High-Pressure Gas Injection[J]. Petroleum Drilling Techniques, 2015, 43(2): 116-119. DOI: 10.11911/syztjs.201502020
    [8]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [9]Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020
    [10]Yang Bin, Fang Yang, Wang Guozheng, Li Junping. Indoor Test of Heavy Oil Recovery by Gravity Drainage with Solvent[J]. Petroleum Drilling Techniques, 2012, 40(3): 102-106. DOI: 10.3969/j.issn.1001-0890.2012.03.021
  • Cited by

    Periodical cited type(10)

    1. 李润森,侯冰,周长静,何明舫,刘欣佳. 砂泥岩薄互储层缝控压裂力学机理及穿层判别准则. 中国海上油气. 2025(01): 156-166 .
    2. 侯冰,廖志豪,张庄,罗加伦,琚宜文,王文. 水力压裂物理模拟方法的数字化和智能化发展综述. 辽宁石油化工大学学报. 2025(02): 1-12 .
    3. 端祥刚,胡志明,常进,石雨昕,吴振凯,许莹莹. 页岩储层无支撑缝网区流动能力影响因素研究与进展. 特种油气藏. 2025(01): 22-31 .
    4. 吕振虎,吕蓓,罗垚,吴虎,李丽哲,王博. 基于光纤监测的段内多簇暂堵方案优化. 石油钻探技术. 2024(01): 114-121 . 本站查看
    5. 贾文婷,牟建业,李小伟,王新亮,张士诚,王丽峰. 射孔参数对砂砾岩储层压裂的影响. 石油钻采工艺. 2024(01): 97-105 .
    6. 房茂军,杜旭林,白玉湖,李昊,张浩,朱海燕. 多薄层致密砂岩储层大型水力压裂三维物理模拟实验. 石油实验地质. 2024(04): 786-798 .
    7. 王剑波,侯冰,滕卫卫,李小迪,刘见通,梁宝兴,张远凯,魏云. 致密砾岩储层力学特征与水力裂缝扩展机理研究进展. 石油科学通报. 2024(06): 972-990 .
    8. 陈瑞杰,熊志文,王瑞,郝少伟. 煤层顶板水力压裂裂缝扩展规律实验研究. 中国矿业. 2024(12): 208-216 .
    9. 刘剑,邵振宝,付京斌,吴珍锁,王耀宗,王会昊. 压裂路径对水力压裂裂纹扩展影响试验研究. 河北工程大学学报(自然科学版). 2024(06): 8-17 .
    10. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (99) PDF downloads (32) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return