Citation: | ZHU Guanghai, LIU Zhangcong, XIONG Xudong, SONG Xuncheng, WANG Junheng, WENG Bo. Numerical Calculation Method of the Wellbore Temperature Field for Electric Heating Heavy Oil Thermal Recovery[J]. Petroleum Drilling Techniques, 2019, 47(5): 110-115. DOI: 10.11911/syztjs.2019109 |
The wellbore temperature field of electric heating-based heavy oil thermal recovery forms the basis of the thermal recovery operation parameters design. Based on the heat transfer theory and the calculation method of wellbore temperature/pressure fields for gas-liquid two-phase flow, the wellbore temperature field numerical calculation method for continuous electric heating and electromagnetic nipple heating processes that considers the influence of temperature on the thermal properties of heavy oil was established. By taking the Well X in Dagang Oilfield as an example, the wellbore temperature fields of continuous electric heating and electromagnetic nipple heating processes under different heating powers were calculated. The calculation results showed that the relative error between the wellhead temperature calculated with this model and the measured one was only 3.10%. This met the requirements of engineering design accuracy, and verified the validity and accuracy of this calculation method. The wellbore temperature profile formed by continuous electric heating was smooth and continuous, whereas the profile formed by electromagnetic nipple heating process was zigzag and had dramatic fluctuations. The wellhead temperature formed by the continuous electric heating process was higher than that of the electromagnetic nipple heating, and the average temperature of the continuous electric heating process was lower than that of the electromagnetic nipple heating process. The research results could provide guidance and reference for the selection of electric heating heavy oil thermal recovery processes and operation parameters design.
[1] |
刘文章. 普通稠油油藏二次热采开发模式综述[J]. 特种油气藏, 1998, 5(2): 1–7.
LIU Wenzhang. Summary of secondary thermal recovery for conventional heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 1998, 5(2): 1–7.
|
[2] |
梁丹,冯国智,曾祥林,等. 海上稠油两种热采方式开发效果评价[J]. 石油钻探技术, 2014, 42(1): 95–99. doi: 10.3969/j.issn.1001-0890.2014.01.019
LIANG Dan, FENG Guozhi, ZENG Xianglin, et al. Evaluation of two thermal methods in offshore heavy oilfields development[J]. Petroleum Drilling Techniques, 2014, 42(1): 95–99. doi: 10.3969/j.issn.1001-0890.2014.01.019
|
[3] |
唐述凯,李明忠,刘陈伟,等. 闭式热流体循环井筒温度分布规律研究[J]. 石油钻探技术, 2014, 42(5): 104–108.
TANG Shukai, LI Mingzhong, LIU Chenwei, et al. Temperature distribution in closed wellbore with hot fluid circulation[J]. Petroleum Drilling Techniques, 2014, 42(5): 104–108.
|
[4] |
任瑛. 加热开采稠油工艺的探讨:井筒中的热流体循环[J]. 华东石油学院学报(自然科学版), 1982, 6(4): 53–66.
REN Ying. Thermal production of viscous oil with recycling of hot fluid in well bore[J]. Journal of East China Petroleum Institute (Edition of Natural Science), 1982, 6(4): 53–66.
|
[5] |
阚庆山,江永全,徐凌云,等. 大港油田火成岩油藏稠油热采工艺[J]. 石油钻采工艺, 2009, 31(2): 115–117.
KAN Qingshan, JIANG Yongquan, XU Lingyun, et al. Technology of thermal recovery of volcanic high-viscosity reservoirs in Dagang Oilfield[J]. Oil Drilling & Production Technology, 2009, 31(2): 115–117.
|
[6] |
李伟超,刘平,于继飞,等. 渤海稠油油田井筒电加热技术可行性分析[J]. 断块油气田, 2012, 19(4): 513–516.
LI Weichao, LIU Ping, YU Jifei, et al. Feasibility analysis on electric heating of wellbore in heavy oilfield of Bohai[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 513–516.
|
[7] |
余五星, 潘建华, 林军, 等. 超稠油中频电加热采油技术[J]. 特种油气藏, 2000, 7(增刊1): 31–33.
YU Wuxing, PAN Jianhua, LIN Jun, et al. Thermal producing of super heavy oil with frequency current[J]. Special Oil & Gas Reservoirs, 2000, 7(Supplement1): 31–33.
|
[8] |
宋时权,张公社,李晶晶,等. 电加热杆抽油井温度分布计算[J]. 断块油气田, 2008, 15(3): 121–123.
SONG Shiquan, ZHANG Gongshe, LI Jingjing, et al. Calculation of temperature distribution of electrical heating rod in pumping well[J]. Fault-Block Oil & Gas Field, 2008, 15(3): 121–123.
|
[9] |
姚传进,雷光伦,吴川,等. 高凝原油井筒温度场影响因素研究[J]. 石油钻探技术, 2011, 39(5): 74–78. doi: 10.3969/j.issn.1001-0890.2011.05.016
YAO Chuanjin, LEI Guanglun, WU Chuan, et al. Study of the factors impacting on wellbore temperature in high pour point oil production[J]. Petroleum Drilling Techniques, 2011, 39(5): 74–78. doi: 10.3969/j.issn.1001-0890.2011.05.016
|
[10] |
卢智慧,何雪芹,刘志恒,等. 考虑环境因素的井筒流动温度场计算[J]. 断块油气田, 2016, 23(5): 652–654.
LU Zhihui, HE Xueqin, LIU Zhiheng, et al. Calculation of wellbore flowing temperature distribution considering environmental factors[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 652–654.
|
[11] |
李梦博,柳贡慧,李军,等. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术, 2014, 42(5): 74–79.
LI Mengbo, LIU Gonghui, LI Jun, et al. Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74–79.
|
[12] |
王江帅,李军,柳贡慧,等. 循环钻进过程中井筒温度场新模型[J]. 断块油气田, 2018, 25(2): 240–243.
WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil and Gas Field, 2018, 25(2): 240–243.
|
[13] |
RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 2013, 14(4): 427–435.
|
[14] |
宋洵成,韦龙贵,何连,等. 气液两相流循环温度和压力预测耦合模型[J]. 石油钻采工艺, 2012, 34(6): 5–9. doi: 10.3969/j.issn.1000-7393.2012.06.004
SONG Xuncheng, WEI Longgui, HE Lian, et al. Acoupled model for wellbore temperature and pressure prediction of gas-liquid drilling fluid[J]. Oil Drilling & Production Technology, 2012, 34(6): 5–9. doi: 10.3969/j.issn.1000-7393.2012.06.004
|
[15] |
HASAN A R, KABIR C S, SAYARPOUR M. Simplified two-phase flow modeling in wellbores[J]. Journal of Petroleum Science and Engineering, 2010, 72(1/2): 42–49.
|
[16] |
BEGGS H D, BRILL J P. A study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607–617. doi: 10.2118/4007-PA
|
[17] |
ANSARI A M, SYLVESTER N D, SHOHAM O, et al. A comprehensive mechanistic model for upward two-phase flow in wellbores[R]. SPE 20630, 1990.
|