Citation: | YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, KE Ke, WANG Zhiyuan. Temperature Field Prediction Model for Multi-Layer Commingled Production Wellbore in Intelligent Wells and It's Application[J]. Petroleum Drilling Techniques, 2019, 47(4): 83-91. DOI: 10.11911/syztjs.2019049 |
In order to optimize the temperature monitoring equipment and properly determine the positions of measuring points for the multi-layer commingled production of intelligent wells, it is necessary to accurately predict the whole wellbore temperature profile. According to the characteristics of fluid flow in the commingled production wellbore of intelligent wells, a prediction model for single-tubing multi-layer commingled production wellbore temperature with the flow control valve was established. Taking the throttling effect of flow control valve on fluids flow parameters in the system into account, a numerical simulation was carried out in combination with the working conditions of production wells. The model prediction results showed that the wellbore temperature changed regularly with several variables, including the produced fluids properties, liquid production rate, thickness of payzone, production allocation of each layer and geothermal gradient. Compared with the individual production layer, the wellbore temperature of commingled production wells is higher than the average temperature of wells with individually produced layer, and the temperature gradient of commingled production wellbore is the lowest. Based on the principle of minimum temperature measurement error at the flow control valve, an optimization method for temperature sensor index and measuring point was proposed. Taking into consideration the wellbore temperature, temperature gradient and the laws of temperature drop at flow control valve, it was possible to obtain an interpretation method of production layer temperature anomaly. The temperature field prediction model of multi-layer commingled production wellbore in intelligent wells provided a theoretical basis for optimizing the temperature measuring equipment and temperature data interpretation in multi-layer commingled production.
[1] |
单彦魁, 韦红术, 张俊斌, 等. 南海深水油田智能井修井挑战及对策[J]. 钻采工艺, 2017, 40(6): 63–65. doi: 10.3969/J.ISSN.1006-768X.2017.06.19
SHAN Yankui, WEI Hongshu, ZHANG Junbin, et al. Challenges and countermeasures for workover on deepwater smart well in South China Sea[J]. Drilling & Production Technology, 2017, 40(6): 63–65. doi: 10.3969/J.ISSN.1006-768X.2017.06.19
|
[2] |
石军太, 李骞, 张磊, 等. 多层合采气井产能指示曲线异常的原因与校正方法[J]. 天然气工业, 2018, 38(3): 50–59. doi: 10.3787/j.issn.1000-0976.2018.03.006
SHI Juntai, LI Qian, ZHANG Lei, et al. An abnormality of productivity indicative curves for multi-layer gas wells: reason analysis and a correction method[J]. Natural Gas Industry, 2018, 38(3): 50–59. doi: 10.3787/j.issn.1000-0976.2018.03.006
|
[3] |
何祖清, 梁承春, 彭汉修, 等. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验[J]. 石油钻探技术, 2017, 45(3): 88–94.
HE Zuqing, LIANG Chengchun, PENG Hanxiu, et al. Research and tests on horizontal well smart layering exploiting technology in tight oil reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Tech-niques, 2017, 45(3): 88–94.
|
[4] |
石艺. 国际石油2015年十大科技进展(四):全电动智能井系统取得重大进展[J]. 石油钻采工艺, 2016, 38(1): 92.
SHI Yi. Top ten scientific and technological progress of inter-national petroleum in 2015(4): major progress of all-electric smart well system[J]. Oil Drilling & Production Technology, 2016, 38(1): 92.
|
[5] |
王浩. 智能完井生产优化方法研究[D]. 西安: 西安石油大学, 2017.
WANG Hao. Research on production optimization method of intelligent completion[D]. Xi’an: Xi’an Shiyou University, 2017.
|
[6] |
姚军, 刘钧荣, 张凯. 国外智能井技术[M]. 北京: 石油工业出版社, 2011: 21-55.
YAO Jun, LIU Junrong, ZHANG Kai. Intelligent well technology abroad[M]. Beijing: Petroleum Industry Press, 2011: 21-55.
|
[7] |
TIWARI A, BROWN W P. System and method for simultaneous visualization of fluid flow within well completions and a reservoir: US13811826[P]. 2013-07-11.
|
[8] |
刘涛, 刘生平. 智能分层控采技术在牛263井的应用[J]. 化工管理, 2016, 29(16): 157. doi: 10.3969/j.issn.1008-4800.2016.16.084
LIU Tao, LIU Shengping. Application of intelligent stratification and production control technology in Niu 263 Well[J]. Chemical Enterprise Management, 2016, 29(16): 157. doi: 10.3969/j.issn.1008-4800.2016.16.084
|
[9] |
张振奇, 童茂松, 曹庆芳, 等. 光纤传感器及其在石油钻探中的应用[J]. 石油仪器, 2007, 21(4): 1–6. doi: 10.3969/j.issn.1004-9134.2007.04.001
ZHANG Zhenqi, TONG Maosong, CAO Qingfang, et al. Optic fiber sensor and its application in drilling and exploration[J]. Petroleum Instruments, 2007, 21(4): 1–6. doi: 10.3969/j.issn.1004-9134.2007.04.001
|
[10] |
DA SILVA M F, MURADOV K M, DAVIES D R. Review, analysis and comparison of intelligent well monitoring systems[R]. SPE 150195, 2012.
|
[11] |
RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435. doi: 10.2118/96-PA
|
[12] |
WILLHITE G P. Over-all heat transfer coefficients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi: 10.2118/1449-PA
|
[13] |
KABIR C S, HASAN A R, JORDAN D L, et al. A well-bore/reservoir simulator for testing gas wells in high-temperature reservoirs[J]. SPE Formation Evaluation, 1996, 11(2): 128–134. doi: 10.2118/28402-PA
|
[14] |
HASAN A R, KABIR C S, AMEEN M M, et al. A fluid circulating temperature model for workover operations[J]. SPE Journal, 1996, 1(2): 133–144. doi: 10.2118/27848-PA
|
[15] |
YIN Bangtang, LI Xiangfang, LIU Gang. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli[J]. Petroleum Science, 2018, 15(1): 135–145. doi: 10.1007/s12182-017-0193-y
|
[16] |
廖成龙, 黄鹏, 李明, 等. 智能完井用井下液控多级流量控制阀研究[J]. 石油机械, 2016, 44(12): 32–37.
LIAO Chenglong, HUANG Peng, LI Ming, et al. Downhole hydraulic operated multistage flow control valve for intelligent well completion system[J]. China Petroleum Machinery, 2016, 44(12): 32–37.
|
[17] |
AJAYI A A, KONOPCZYNSKI M R. Theory and application of probabilistic method of designing customized interval control valves choke trim for multizone intelligent well systems[R]. SPE 110600, 2007.
|
[18] |
HOLMAN J P. Heat transfer[M]. New York: McGraw-Hill Book Company, 1976.
|
[19] |
HASAN A R, KABIR C S. Fluid flow and heat transfer in wellbores[M]. 2nd ed. Richardson: Society of Petroleum Engineers, 2018.
|
[20] |
CENGEL Y A, BOLES M A. Thermodynamics: an engineering approach[M]. 3rd ed. Hightstown: WCB/McGraw-Hill, 1998.
|
[21] |
李维国, 同登科. 数值计算方法[M]. 2版. 东营: 中国石油大学出版社, 2009: 243-249.
LI Weiguo, TONG Dengke. Numerical computation method[M]. 2nd ed. Dongying: China University of Petroleum Press, 2009: 243-249.
|
[22] |
MURADOV K M, DAVIES D R. Zonal rate allocation in intelligent wells[R]. SPE 121055, 2009.
|
[1] | LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065 |
[2] | JI Cheng, ZHAO Bing, LI Jianbin, LUO Pandeng, FANG Haoqing. Research of Temperature-Responsive Subsurface Self-Generated Proppant[J]. Petroleum Drilling Techniques, 2022, 50(4): 45-51. DOI: 10.11911/syztjs.2022078 |
[3] | ZHAO Guangyuan, WANG Tianhui, YANG Shukun, LI Xiang, LV Guosheng, DU Xiaoxia. Key Optimization Technologies of Intelligent Layered Water Injection with Hydraulic Control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76-81. DOI: 10.11911/syztjs.2021125 |
[4] | WANG Kelin, LIU Hongtao, HE Wen, HE Xinxing, GAO Wenxiang, SHAN Feng. Failure Control of Completion Packer in the High Temperature and High Pressure Gas Well of Kuqa Piedmont Structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61-66. DOI: 10.11911/syztjs.2020128 |
[5] | Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014 |
[6] | He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005 |
[7] | Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013 |
[8] | Zhao Xinxin, Wu Xuefeng, Gao Yonghai, Li Hao, Guo Yanli. Numerical Simulation of Temperature Distribution of Blowout Preventers in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 46-50. DOI: 10.3969/j.issn.1001-0890.2013.03.009 |
[9] | Xia Huanyu, Zhai Yinghu, An Yan, Cui Yongxing. The Effect of Boost Flow in Riser on the Wellbore Temperature in Deep Water Drilling[J]. Petroleum Drilling Techniques, 2012, 40(1): 32-36. DOI: 10.3969/j.issn.1001-0890.2012.01.007 |
[10] | Study of Foam Drilling Fluid Temperature Sensitivity[J]. Petroleum Drilling Techniques, 2011, 39(4): 34-39. DOI: 10.3969/j.issn.1001-0890.2011.04.007 |
1. |
冯高城,尹彦君,马良帅,张亮,王伟. 海上油田智能井技术发展应用及探讨. 西南石油大学学报(自然科学版). 2022(04): 153-164 .
![]() | |
2. |
赵向阳,赵聪,王鹏,梁晓阳,杨谋. 超深井井筒温度数值模型与解析模型计算精度对比研究. 石油钻探技术. 2022(04): 69-75 .
![]() | |
3. |
卫胜利,王亚强,高致斌,张刚刚. 低渗砂岩油藏多层合采层间干扰因素分析. 中外企业家. 2020(20): 230 .
![]() | |
4. |
毛新军,曹植纲,陈超峰,胡广文,封猛,咸玉席. 高产井地层特征的热流耦合温度反演新方法. 石油钻探技术. 2020(04): 118-123 .
![]() |