ZHOU Chao, WU Xiaodong, ZHANG Tongyi, ZHAO Xu. Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142
Citation: ZHOU Chao, WU Xiaodong, ZHANG Tongyi, ZHAO Xu. Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142

Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery

More Information
  • Received Date: April 16, 2018
  • Revised Date: October 03, 2018
  • Mechanistic studies of vortex drainage gas recovery are insufficient and cannot effectively create guidelines for field application.What is lacking is an analysis that aims to research the influence of the structure parameters of the vortex tool on the drainage effect.Therefore,based on the theory of similarity,physical simulation experiments were designed and the experimental facilities were set up.Then impact of installing the vortex tool were examines,namely the wellbore pressure drop and the flow rate curves.Later,the influences of helical flow channel scale,sealing on both sides of flow channel and helix angle of vortex tool on the drainage effect were analyzed.It was possible then to determine the critical flow rate after installing the optimized vortex tool.The theoretical model for calculating the optimal helical angle was established based on the two-phase fluid dynamic theory.The experiment showed that the drainage effect of vortex tools could be improve while enhancing the leak-tightness and decreasing the size of the flow channel under the conditions of low wellbore pressure drop.The experimental optimal helix angle was 45°,which was in good agreement with the results of the theoretical model;after installing the optimized vortex tool,the wellbore pressure drop would decrease by about 9.6%,the liquid flow rate would increase by about 12.4%,and the critical flow rate would decrease by about 20%.The optimized vortex tool enhanced the drainage capability and the results of optimal theoretical model for helix angle were reliable,thus providing theoretical guidance for design and field application of the vortex tool.
  • [1]
    SIMPSON D A.Vortex flow technology finding new applications[J].Rocky Mountain Oil Journal,2003,83(45):4-5.
    [2]
    陈德春,付刚,韩昊,等.气井携液用涡流工具结构参数优化[J].石油钻采工艺,2016,38(3):400-404.

    CHEN Dechun,FU Gang,HAN Hao,et al.Optimization of structural parameters for fluid-carrying swirl tool in gas wells[J].Oil Drilling & Production Technology,2016,38(3):400-404.
    [3]
    ALI A J,SCOTT S L,FEHN B.Investigation of new tool to unload liquids from stripper-gas wells[J].SPE Production & Facilities,2005,20(4):306-316.
    [4]
    SINGH K A,SARKAR P,PRALEYA P,et al.Unconventional cyclone gas lift completion for offshore wells of Cambay Basin:a smart completion to optimize production and well intervention[R].SPE 181574,2016.
    [5]
    ZHANG Z,LIAO R Q,LIU J.Dynamics and effective distance of gas-liquid two-phase swirling flow induced by vortex tools[J].Advances in Mechanical Engineering,2018,10(9):1-11.
    [6]
    杨旭东,卫亚明,肖述琴,等.井下涡流工具排水采气在苏里格气田探索研究[J].钻采工艺,2013,36(6):125-127.

    YANG Xudong,WEI Yaming,XIAO Shuqin,et al.Research of downhole vortex dewatering gas recovery in Sulige Gasfield[J].Drilling & Production Technology,2013,36(6):125-127.
    [7]
    周朝,吴晓东,汤敬飞,等.井下涡流排液采气井筒临界携液量计算[J].大庆石油地质与开发,2016,35(6):99-103.

    ZHOU Chao,WU Xiaodong,TANG Jingfei,et al.Calculation of the critical liquid carry-over in the wellbore for downhole vortex dewatering gas recovery[J].Petroleum Geology and Oilfield Development in Daqing,2016,35(6):99-103.
    [8]
    陈德春,姚亚,韩昊,等.气井涡流排液采气工具有效作用长度[J].断块油气田,2016,23(4):537-540.

    CHEN Dechun,YAO Ya,HAN Hao,et al.Effective length of vortex tools for liquid discharge in gas wells[J].Fault-Block Oil & Gas Field,2016,23(4):537-540.
    [9]
    侯绪田,赵向阳,孟英峰,等.基于真实裂缝试验装置的液液重力置换试验研究[J].石油钻探技术,2018,46(1):30-36.

    HOU Xutian,ZHAO Xiangyang,MENG Yingfeng,et al.Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J].Petroleum Drilling Techniques,2018,46(1):30-36.
    [10]
    谢志勤.自蔓燃化学点火火烧油层物理模拟研究[J].石油钻探技术,2018,46(3):93-97.

    XIE Zhiqin.Physical simulation study of in-situ combustion by a chemical self-propagating igniter[J].Petroleum Drilling Techniques,2018,46(3):93-97.
    [11]
    ALI A J.Investigation of flow modifying tools for the continuous unloading of wet-gas wells[D].College Station:Texas A & M University,2003.
    [12]
    BOSE R.Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells[D].College Station:Texas A&M University,2007.
    [13]
    杜汶浓.川西气田涡流排水采气工艺技术研究[D].成都:西南石油大学,2015. DU Wennong.Research of vortex gas drainage technology in Western Sichuan Gas Field[D].Chengdu:Southwest Petroleum University,2015.
    [14]
    陈德春,韩昊,姚亚,等.气井涡流工具作用效果分析与临界携液流量实验研究[J].天然气地球科学,2015,26(11):2137-2140.

    CHEN Dechun,HAN Hao,YAO Ya,et al.An experimental study on the effect of the vortex tool and its influence on critical velocity[J].Natural Gas Geoscience,2015,26(11):2137-2141.
    [15]
    TURNER R G,HUBBARD M G,DULKER A E.Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J].Journal of Petroleum Technology,1969,21(11):1475-1482.
    [16]
    COLEMAN S B,CLAY H B, McCURDY D G,et al.A new look at predicting gas well load-up[J].Journal of Petroleum Technology,1991,43(3):329-333.
    [17]
    李闽,郭平,谭光天.气井携液新观点[J].石油勘探与开发,2001,28(5):105-106.

    LI Min,GUO Ping,TAN Guangtian.New look on removing liquids from gas wells[J].Petroleum Exploration and Development,2001,28(5):105-106.
    [18]
    RICHTER H J.Flooding in tubes and annuli[J].International Journal of Multiphase Flow,1981,7(6):647-658.
    [19]
    周朝,吴晓东,刘雄伟,等.深层凝析气井临界携液模型优化研究[J].特种油气藏,2015,22(6):97-100.

    ZHOU Chao,WU Xiaodong,LIU Xiongwei,et al.Study on optimization of critical fluid carrying model for deep condensate gas well[J].Special Oil & Gas Reservoirs,2015,22(6):97-100.
    [20]
    吴晓东,周朝,安永生,等.涡流排液采气的液滴动力学分析与螺旋角优化[J].天然气工业,2016,36(5):45-50.

    WU Xiaodong,ZHOU Chao,AN Yongsheng,et al.Dynamic analysis of liquid droplet and optimization of helical angle for vortex drainage gas recovery[J].Natural Gas Industry,2016,36(5):45-50.
    [21] 金向红,金有海,王建军.气液旋流器内液滴破碎和碰撞的数值模拟[J].中国石油大学学报(自然科学版),2010,34(5):114-120,125. JIN Xianghong,JIN Youhai,WANG Jianjun.Numerical simulation on breakup and collision of droplet in gas-liquid cyclone separator[J].Journal of China University of Petroleum(Edition of Natural Science),2010,34(5):114-120,125.
    [22]
    郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002:342-345. GUO Liejin.Two-phase and multiphase flow mechanics[M].Xi'an:Xi'an Jiaotong University Press,2002:342

    -345.
  • Related Articles

    [1]CHEN Lian, SONG Zhaohui, WANG Xindong, ZHANG Wutao, XIE Zhengsen, SU Zihua. Optimization Methodology for Tooth Deflection Angles of Single-Cone Bit with Wedge-Shaped Teeth[J]. Petroleum Drilling Techniques, 2023, 51(1): 57-61. DOI: 10.11911/syztjs.2022026
    [2]SUN Xiaofeng, ZHANG Kebo, YUAN Yujin, NI Xiaodong, CHEN Ye. The Establishment and Correction of a Prediction Model for the Repose Angle of a Cuttings Bed in Highly Deviated Well Interval[J]. Petroleum Drilling Techniques, 2019, 47(4): 22-28. DOI: 10.11911/syztjs.2019039
    [3]LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052
    [4]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [5]RUAN Chenliang, WANG Xiaoyong, ZHANG Rui, MA Lanrong. Key Techniques of Rotating Liners Running in High Angle Wells[J]. Petroleum Drilling Techniques, 2016, 44(4): 52-57. DOI: 10.11911/syztjs.201604010
    [6]Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
    [7]Ai Chi, Yu Fahao, Feng Fuping, Zhao Enyuan, Liu Yuxi. Calculation of Tubing Critical Pump Rate while Fricturing by both Tubing and Casing with Packers[J]. Petroleum Drilling Techniques, 2014, 42(1): 81-85. DOI: 10.3969/j.issn.1001-0890.2014.01.016
    [8]Zhu Xiaohua, Shi Changshuai, Zhang Wenhua, Pang Ran. Simulation of Stator and Rotor Meshing Rotation of Double Helix Single Screw Pump[J]. Petroleum Drilling Techniques, 2013, 41(6): 100-105. DOI: 10.3969/j.issn.1001-0890.2013.06.020
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Wu Han, Wu Xiaodong, Zhang Qingsheng, Fang Yue, Zhao Yuxin. Reasonable Diameter Selection of Production String for Puguang Gas Well with High H2S[J]. Petroleum Drilling Techniques, 2012, 40(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2012.01.020
  • Cited by

    Periodical cited type(8)

    1. 丁乾申,吴春新,李金泽,邹德昊,夏金娜,何滨. 电热化学聚能冲击波致裂储层数值模拟及破岩规律研究. 石油钻探技术. 2025(01): 67-74 . 本站查看
    2. 高继开,姜涵钧,王秀龙,张凤鹏,彭建宇. 基于金属丝电爆炸的岩石爆破教学实验平台设计及应用. 实验技术与管理. 2024(11): 146-152 .
    3. 孟向丽,杨淼,黄利平,刘春祥,李旭光. 油井筛管堵塞识别和治理方法. 石油工业技术监督. 2022(04): 7-10 .
    4. 赵树彬,张命俊,路远涛,汤俊萍,汪锋,朱立江,郑永学. 可控冲击波增产技术在大庆油田的应用. 石油管材与仪器. 2022(05): 76-80 .
    5. 阎洪涛,徐文江,于继飞,姜维东,陈欢. 海上疏松砂岩油田注水压力优化方法研究. 中国海上油气. 2021(02): 131-135 .
    6. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 .
    7. 赵景辉,杨万有,郑春峰,李昂,沈琼. 可控冲击波作用下的油井产能模型研究. 重庆科技学院学报(自然科学版). 2021(03): 15-19+48 .
    8. 江海畏,薛启龙. 电爆冲击波对储层致裂效果影响因素的数值模拟研究. 探矿工程(岩土钻掘工程). 2020(11): 70-76 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (7927) PDF downloads (38) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return