Citation: | DING Qianshen, WU Chunxin, LI Jinze, et al. Numerical simulation and rock breaking law of reservoir induced by electrothermal chemical energy-gathered shock wave [J]. Petroleum Drilling Techniques, 2025, 53(1):67−74. DOI: 10.11911/syztjs.2024125 |
To explore the rock breaking law and mechanism of the reservoir stimulation technology by electrothermal chemical energy-gathered shock wave, a group of work have been done. Firstly, based on a clear understanding of the evolution of technological devices, the mechanism of propagation and damage of energy-gathered shock waves in reservoirs was analyzed. Then, by using the JH−2 numerical model of brittle material with dynamic failure and conducting physical simulation tests to verify the simulation method, the repeated impact rock breaking test of the energy-gathered shock wave was carried out, and the influence law and mechanism of different energy-gathered shock wave waveforms on the rock breaking effect were analyzed. Finally, the waveforms of different combinations of shock waves were simulated and optimized. The results indicate that the process of rock breaking by energy-gathered shock waves includes the near wellbore fragmentation buffering stage, the competitive initiation and expansion stage of multiple fractures, and the extension and expansion stage of dominant fractures. The combination of shock wave parameters with a peak pressure of 90 MPa and a pulse width of 15 μs has a good fracturing effect. The combinations of low peak pressure with small pulse width and high peak pressure with large pulse width have a better effect on repeated impact rock breaking, which produces a large number of fractures with long lengths and smaller fracture zones. The research results have clarified the rock breaking mechanism of the reservoir stimulation technology by electrothermal chemical energy-gathered shock waves to some extent, providing theoretical support for field applications.
[1] |
徐鲲,陶林,李文龙,等. 渤海油田变质岩潜山油藏钻井关键技术[J]. 石油钻探技术,2023,51(3):16–21. doi: 10.11911/syztjs.2023070
XU Kun, TAO Lin, LI Wenlong, et al. Key drilling technologies for metamorphic buried hill reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 16–21. doi: 10.11911/syztjs.2023070
|
[2] |
达引朋,李建辉,王飞,等. 长庆油田特低渗透油藏中高含水井调堵压裂技术[J]. 石油钻探技术,2022,50(3):74–79. doi: 10.11911/syztjs.2022012
DA Yinpeng, LI Jianhui, WANG Fei, et al. Fracturing technologies with profile control and water shutoff for medium and high water-cut wells in ultra-low permeability reservoirs of Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(3): 74–79. doi: 10.11911/syztjs.2022012
|
[3] |
孙林,黄波,张杰,等. 过筛管爆燃压裂技术[J]. 特种油气藏,2021,28(3):162–167. doi: 10.3969/j.issn.1006-6535.2021.03.025
SUN Lin, HUANG Bo, ZHANG Jie, et al. Study on screen-through deflagration fracturing technology[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 162–167. doi: 10.3969/j.issn.1006-6535.2021.03.025
|
[4] |
刘伟吉,张有建,祝效华,等. 影响高压电脉冲破岩效率的关键因素分析[J]. 天然气工业,2023,43(10):112–124. doi: 10.3787/j.issn.1000-0976.2023.10.012
LIU Weiji, ZHANG Youjian, ZHU Xiaohua, et al. Key factors influencing rock breaking efficiency of high voltage electric pulse[J]. Natural Gas Industry, 2023, 43(10): 112–124. doi: 10.3787/j.issn.1000-0976.2023.10.012
|
[5] |
刘红磊,周林波,陈作,等. 中国石化页岩气电动压裂技术现状及发展建议[J]. 石油钻探技术,2023,51(1):62–68. doi: 10.11911/syztjs.2022100
LIU Honglei, ZHOU Linbo, CHEN Zuo, et al. The up-to-date electric shale gas fracturing technologies of Sinopec and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2023, 51(1): 62–68. doi: 10.11911/syztjs.2022100
|
[6] |
VOROB’EV G A, EKHANIN S G, NESMELOV N S. Electrical breakdown in solid dielectrics[J]. Physics of the Solid State, 2005, 47(6): 1083–1087. doi: 10.1134/1.1946860
|
[7] |
CLEMENTS J S, SATO M, DAVIS R H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water[J]. IEEE Transactions on Industry Applications, 1987, IA-23(2): 224–235. doi: 10.1109/TIA.1987.4504897
|
[8] |
孙凤举,曾正中,邱毓昌,等. 一种用于油水井解堵的脉冲大电流源[J]. 高电压技术,1999,25(2):47–49. doi: 10.3969/j.issn.1003-6520.1999.02.017
SUN Fengju, ZENG Zhengzhong, QIU Yuchang, et al. Pulse high current power supply used for dredging oil & water wells[J]. High Voltage Engineering, 1999, 25(2): 47–49. doi: 10.3969/j.issn.1003-6520.1999.02.017
|
[9] |
孙鹞鸿,孙广生,严萍,等. 大功率电脉冲采油技术原理与应用[J]. 钻采工艺,2002,25(5):53–55. doi: 10.3969/j.issn.1006-768X.2002.05.018
SUN Yaohong, SUN Guangsheng, YAN Ping, et al. High-power electrical impulse oil recovery technology and its application[J]. Drilling & Production Technology, 2002, 25(5): 53–55. doi: 10.3969/j.issn.1006-768X.2002.05.018
|
[10] |
BUNTZEN R R. The use of exploding wires in the study of small-scale underwater explosions[C]//Exploding Wires. Boston: Springer, 2001: 195−205.
|
[11] |
TOBE T, KATO M, OBARA H. Metal forming by underwater wire explosions: 2. experiments on bulging of circular aluminum sheets by copper wire explosions[J]. Bulletin of JSME, 1984, 27(223): 130–135. doi: 10.1299/jsme1958.27.130
|
[12] |
GRINENKO A, GUROVICH V T, SAYPIN A, et al. Strongly coupled copper plasma generated by underwater electrical wire explosion[J]. Physical Review E, 2005, 72(6): 066401. doi: 10.1103/PhysRevE.72.066401
|
[13] |
张云亮,孙鹞鸿,王永荣. 大功率电火花震源在VSP测井中的应用[J]. 石油仪器,2006,20(1):27–28.
ZHANG Yunliang, SUN Yaohong, WANG Yongrong. High-power sparker used in VSP logging[J]. Petroleum Tubular Goods & Instruments, 2006, 20(1): 27–28.
|
[14] |
张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术,2016,42(4):1009–1017.
ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017.
|
[15] |
李昂,杨万有,丁乾申,等. 复合电热化学聚能冲击波储层强化改造试验与评价[J]. 石油钻探技术,2020,48(1):72–79. doi: 10.11911/syztjs.2019129
LI Ang, YANG Wanyou, DING Qianshen, et al. Testing and evaluation of reinforced reservoir stimulations using composite electrothermal-chemical shock waves[J]. Petroleum Drilling Techniques, 2020, 48(1): 72–79. doi: 10.11911/syztjs.2019129
|
[16] |
张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂–提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024,52(1):84–95. doi: 10.11911/syztjs.2024012
ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(1): 84–95. doi: 10.11911/syztjs.2024012
|
[17] |
周鹏,杜孝友,曹砚锋,等. 电爆冲击波增渗解堵技术试验研究[J]. 石油钻探技术,2020,48(2):98–103. doi: 10.11911/syztjs.2020033
ZHOU Peng, DU Xiaoyou, CAO Yanfeng, et al. Experimental research on permeability enhancement and plug removal by means of an electric explosion shock wave[J]. Petroleum Drilling Techniques, 2020, 48(2): 98–103. doi: 10.11911/syztjs.2020033
|
[18] |
李沼萱,闫铁,侯兆凯,等. 液相高压脉冲放电致裂岩石技术研究进展[J]. 特种油气藏,2021,28(4):1–9. doi: 10.3969/j.issn.1006-6535.2021.04.001
LI Zhaoxuan, YAN Tie, HOU Zhaokai, et al. Study progress of rock fracturing technology with high-voltage pulse discharge in liquid[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 1–9. doi: 10.3969/j.issn.1006-6535.2021.04.001
|
[19] |
王先荣,袁艳勤,钟声. 低渗透油藏冲击波解堵的应用效果与影响因素分析[J]. 特种油气藏,2005,12(4):68–69. doi: 10.3969/j.issn.1006-6535.2005.04.020
WANG Xianrong, YUAN Yanqin, ZHONG Sheng. Effectiveness and influence factors of deplugging by shock wave in low permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2005, 12(4): 68–69. doi: 10.3969/j.issn.1006-6535.2005.04.020
|