Citation: | ZHU Lei, PAN Jinlin, CHEN Xuelian, et al. Influence of casing and cement sheath dimensions on casing waves in CBL/VDL logging [J]. Petroleum Drilling Techniques, 2025, 53(1):136−143. DOI: 10.11911/syztjs.2025016 |
When using CBL/VDL logging to evaluate cementing quality under complex well conditions such as thick casing and thin cement sheath in deep and ultra-deep wells, the measured amplitude or attenuation of the casing wave is used to determine the cementation condition of cement sheath. However, the research on the propagation mechanism of the casing mode waves is insufficient, and there is a lack of theoretical support for precise cementing quality evaluation. Therefore, a cased well model with cylindrical multi-layer medium was established, and the phase velocity, attenuation, and sensitivity curves of the casing mode waves were calculated. The effects of non-cementing factors, casing diameter, and cement sheath size on casing wave attenuation were studied. The results show that there are 3~4 order axial vibration modes of the casing wave within the range of CBL/VDL logging frequencies. The larger outer diameter of the casing, the more vibration modes there will be. When the casing is cemented, the amplitude of the casing wave increases obviously as the casing thickness increases, while the amplitude of casing waves basically remains unchanged for free-standing casing. Sensitivity curves show that the attenuation of the casing wave is more sensitive to cement shear wave velocity than to the compressional wave velocity, suggesting that casing wave induced by monopole source leaks energy to cement sheath mainly through shear coupling effect. In addition, the snapshots of shear wave and compressional wave fields show that the casing wave also leaks energy to the formation when propagating along the casing, so the change in cement sheath thickness and lithology will also affect the amplitude of the casing wave. The research results provide a theoretical basis for the precise evaluation of cementing quality nd the creation of calibration chart for the casing wave amplitude in complex well conditions.
[1] |
TUBMAN K M, CHENG C H, TOKSÖZ M N. Synthetic full waveform acoustic logs in cased boreholes[J]. Geophysics, 1984, 49(7): 1051–1059. doi: 10.1190/1.1441720
|
[2] |
董庆德,王克协,许吉庆. 柱状多层准弹性介质中声压波形的数值计算与分析:声法测井理论研究(Ⅱ)[J]. 地球物理学报,1985,28(2):208–217. doi: 10.3321/j.issn:0001-5733.1985.02.010
DONG Qingde, WANG Kexie, XU Jiqing. Numerical evaluation and analysis of the acoustic pressure waveform in cylindrical multilayer quasi elastical media: a theoretical study of acoustic logging method (Ⅱ)[J]. Chinese Journal of Geophysics, 1985, 28(2): 208–217. doi: 10.3321/j.issn:0001-5733.1985.02.010
|
[3] |
陈德华,王秀明,张海澜,等. 水泥密度和套管尺寸对油井套管波的影响[J]. 声学学报,2008,33(1):15–20. doi: 10.3321/j.issn:0371-0025.2008.01.003
CHEN Dehua, WANG Xiuming, ZHANG Hailan, et al. The effects of cement density and casing dimension on casing waves in oil wells[J]. Acta Acustica, 2008, 33(1): 15–20. doi: 10.3321/j.issn:0371-0025.2008.01.003
|
[4] |
ZHANG Xiumei, WANG Xiuming, ZHANG Hailan. Leaky modes and the first arrivals in cased boreholes with poorly bonded conditions[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2): 624301.
|
[5] |
WANG Hua, FEHLER M. The wavefield of acoustic logging in a cased-hole with a single casing: part I: a monopole tool[J]. Geophysical Journal International, 2018, 212(1): 612–626. doi: 10.1093/gji/ggx437
|
[6] |
LIU Yang, D’ANGELO R M, SINHA B K, et al. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation[J]. AIP Conference Proceedings, 2017, 1806(1): 030004.
|
[7] |
吴铭德,乔文孝,魏涛,等. 油气井封固性测井述评[J]. 测井技术,2016,40(1):1–11.
WU Mingde, QIAO Wenxiao, WEI Tao, et al. Review on well integrity logging[J]. Well Logging Technology, 2016, 40(1): 1–11.
|
[8] |
刘金璐,李军,柳贡慧,等. 深水固井循环阶段井筒温度场预测模型研究[J]. 石油钻探技术,2024,52(4):66–74.
LIU Jinlu, LI Jun, LIU Gonghui, et al. Prediction model of wellbore temperature field during deepwater cementing circulation stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66–74.
|
[9] |
PONOMARENKO R, SABITOV D, CHARARA M. Spectral element simulation of elastic wave propagation through fractures using linear slip model: microfracture detection for CO2 storage[J]. Geophysical Journal International, 2020, 223(3): 1794–1804. doi: 10.1093/gji/ggaa399
|
[10] |
ZHANG Yanyan, FANG Xinding, GAN Yuandi. An efficient finite-difference approach for acoustic modeling in cased boreholes with micro-annuluses[R]. SEG 2019-3216563, 2019.
|
[11] |
吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65–70. doi: 10.11911/syztjs.2021111
WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65–70. doi: 10.11911/syztjs.2021111
|
[12] |
谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术,2022,50(1):119–126. doi: 10.11911/syztjs.2022015
XIE Guanbao. Establishment of logging evaluation criteria for the cementing quality of low-density cement slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119–126. doi: 10.11911/syztjs.2022015
|
[13] |
PARDUE G H, MORRIS R L. Cement bond log: a study of cement and casing variables[J]. Journal of Petroleum Technology, 1963, 15(5): 545–555. doi: 10.2118/453-PA
|
[14] |
SY/T 6592—2016 固井质量评价方法[S].
SY/T 6592—2016 Procedure for cement evaluation[S].
|
[15] |
魏涛. 油气井固井质量测井评价[M]. 北京:石油工业出版社,2010:133-134.
WEI Tao. Logging evaluation of cement bonding in cased boreholes[M]. Beijing: Petroleum Industry Press, 2010: 133-134.
|
[16] |
潘金林,陈雪莲,唐晓明. 滑移界面表征的套管井声场的理论计算[J]. 地球物理学报,2023,66(1):442–453. doi: 10.6038/cjg2022P0832
PAN Jinlin, CHEN Xuelian, TANG Xiaoming. Theoretical calculation of casing well sound field represented by slip interface[J]. Chinese Journal of Geophysics, 2023, 66(1): 442–453. doi: 10.6038/cjg2022P0832
|
[17] |
朱雷,陈雪莲,张鑫磊,等. 基于IBC和CBL/VDL测井的微间隙识别方法[J]. 石油钻探技术,2024,52(4):135–142.
ZHU Lei, CHEN Xuelian, ZHANG Xinlei, et al. Identification method of microannulus based on IBC and CBL/VDL logging[J]. Petroleum Drilling Techniques, 2024, 52(4): 135–142.
|
[18] |
李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024,52(1):1–7.
LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1–7.
|
[19] |
周仕明,陆沛青. 井筒密封完整性监测与智能感知技术进展与展望[J]. 石油钻探技术,2024,52(5):35–41.
ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity[J]. Petroleum Drilling Techniques, 2024, 52(5): 35–41.
|
1. |
黄明泉. 页岩气三维水平井剖面设计技术. 江汉石油职工大学学报. 2024(01): 45-47 .
![]() | |
2. |
许佳鑫,宋明阶,赵红燕,侯亮,李胜楠. 涪陵页岩气田加密井防碰关键技术. 江汉石油职工大学学报. 2024(02): 38-41 .
![]() | |
3. |
王治国,严焱诚,黄河淳,罗成波. 井研-犍为地区难钻地层钻头优选及应用. 科技和产业. 2024(16): 194-198 .
![]() | |
4. |
刘文武,刘杰,芮学来. 淮南张集矿东-1煤上采区多分支水平注浆井钻井技术. 矿产勘查. 2024(12): 2329-2336 .
![]() | |
5. |
罗平亚,李文哲,代锋,李道雄,钟成旭,白杨. 四川盆地南部龙马溪组页岩气藏井壁强化钻井液技术. 天然气工业. 2023(04): 1-10 .
![]() | |
6. |
赵文彬,宋文豪. 永川黄202区块页岩气水平井钻井提速对策分析. 天然气勘探与开发. 2023(02): 127-134 .
![]() | |
7. |
田辉,仇恒彬,董广华. 预弯曲钟摆钻具防斜打快技术在柯坪高陡构造地层的应用. 西部探矿工程. 2022(01): 39-43 .
![]() | |
8. |
袁光杰,付利,王元,郭凯杰,陈刚. 我国非常规油气经济有效开发钻井完井技术现状与发展建议. 石油钻探技术. 2022(01): 1-12 .
![]() | |
9. |
王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 .
![]() | |
10. |
刘伟,朱礼平,潘登雷,周楚坤,梁霄,刘小斌. WR气田深层页岩气钻井提速提效实践与认识. 天然气技术与经济. 2022(03): 44-50 .
![]() | |
11. |
贾利春,李枝林,张继川,陶怀志,李雷,黄崇君,魏萧. 川南海相深层页岩气水平井钻井关键技术与实践. 石油钻采工艺. 2022(02): 145-152 .
![]() | |
12. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
13. |
刘厚彬,崔帅,孟英峰,周彦行,罗益. 深层脆性页岩水平井井壁崩落失稳研究. 断块油气田. 2021(03): 323-328 .
![]() | |
14. |
郭军,陈相霖,赵训林,王文彬,李岩,韩菲. 桂中-南盘江地区黔水地1井钻井关键技术. 断块油气田. 2021(03): 423-427 .
![]() | |
15. |
娄尔标,周波,刘洪涛,陈锋,王文昌,薛艳鹏. 巨厚砾石层气体钻井井筒不规则性对井斜的影响研究. 石油钻探技术. 2021(03): 62-66 .
![]() | |
16. |
王志亮,张震,周旺明,郭良林,夏成宇,黄和祥. 页岩气井眼净化模拟研究及影响因素分析. 石油机械. 2021(07): 23-30 .
![]() | |
17. |
杨哲,李晓平,万夫磊. 四川长宁页岩气井身结构优化探讨. 钻采工艺. 2021(03): 20-23 .
![]() | |
18. |
严俊涛,叶新群,付永强,李伟,黄南,王业众. 川南深层页岩气旋转导向钻井技术瓶颈的突破. 录井工程. 2021(03): 6-10 .
![]() | |
19. |
王志亮,夏成宇,张震,李郑涛,张新红. 改进型铝合金钻杆对岩屑运移仿真分析. 石油机械. 2021(10): 17-23 .
![]() | |
20. |
王志亮,赵莹,丛成,何璟彬,方永,夏成宇. 基于CFD-DEM的新型铝合金钻杆携岩仿真分析. 机床与液压. 2021(20): 130-136 .
![]() | |
21. |
王志亮,陈锟,张震,周旺明,黄和祥,夏成宇. 新型钻杆的携岩原理研究与数值仿真分析. 工程设计学报. 2021(05): 602-614 .
![]() | |
22. |
石崇东,王万庆,史配铭,杨勇. 盐池区块深层页岩气水平井钻井关键技术研究. 石油钻探技术. 2021(06): 23-28 .
![]() | |
23. |
尹建,刘菊,黎俊吾. 川南高温深层页岩气工程技术支撑管理模式及其应用. 天然气技术与经济. 2021(06): 26-29+49 .
![]() | |
24. |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 .
![]() | |
25. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() | |
26. |
刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 .
![]() | |
27. |
刘伟. 川西气田须家河组致密坚硬地层钻井提速关键技术. 天然气技术与经济. 2020(05): 44-51 .
![]() | |
28. |
王健. 国内深层页岩气钻井难点及技术进展. 石油化工应用. 2020(12): 1-5+20 .
![]() |