SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089
Citation: SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089

Optimal Design and Experimental Study of the Receiver Sonde in Multipole Acoustic LWD Tools

More Information
  • Received Date: February 16, 2022
  • Revised Date: June 14, 2022
  • Available Online: June 22, 2022
  • The receiver sonde of multipole acoustic logging while drilling (LWD) tools directly affects the quality of collected signals and the stability of the tool’s mechanical structure. Therefore, the receiver sonde of multipole acoustic LWD tools was optimized in this study by combining finite element method and experimental measurements. The analysis of the receiver sonde simulation showed that the performance of the receiver sonde was mainly affected by the thickness and area of piezoelectric ceramic slices as well as the thickness and surface flatness of packaging shells. In addition, receiving sensitivity would be enhanced as the thickness of piezoelectric ceramic slices increased, and the area of piezoelectric ceramic slices had no obvious effect on receiving sensitivity when the frequency was below 15 kHz. Furthermore, the variation range of the receiving sensitivity would be smaller as the thickness of packaging shells decreased and the surface flatness increased. On this basis, long square tubes with aluminum shells were processed using 3D printing technology, with a thickness of 0.5 mm and 2.0 mm, respectively. Then, the fabricated receiver sonde was tested in terms of sensitivity, and the test results were in good agreement with the calculated results. As a result, it was demonstrated that thin-wall shells were more beneficial to the signal receiving of measurement. The optimal design of receiver sonde in multipole acoustic LWD tools will provide new possibilities for designing and developing acoustic LWD tools in China.

  • [1]
    TANG X M, CHENG A. Quantitative borehole acoustic me-thods[M]. Amsterdam: Elsevier, 2004.
    [2]
    庄春喜,李杨虎,孔凡童,等. 随钻斯通利波测井反演地层渗透率的理论、方法及应用[J]. 地球物理学报,2019,62(11):4482–4492. doi: 10.6038/cjg2019N0122

    ZHUANG Chunxi, LI Yanghu, KONG Fantong, et al. Formation permeability estimation using Stoneley waves from logging while drilling: theory, method, and application[J]. Chinese Journal of Geophysics, 2019, 62(11): 4482–4492. doi: 10.6038/cjg2019N0122
    [3]
    林剑松,李盛清,刘忠华,等. 随钻划眼采集模式的过套管声波测井数值模拟与实验研究[J]. 地球物理学进展,2021,36(6):2496–2502. doi: 10.6038/pg2021EE0477

    LIN Jiansong, LI Shengqing, LIU Zhonghua, et al. Numerical simulation and experimental research of through casing sonic logging with redressing LWD acquisition mode[J]. Progress in Geophysics, 2021, 36(6): 2496–2502. doi: 10.6038/pg2021EE0477
    [4]
    DEGRANGE J M, HAWTHORN A, NAKAJIMA H, et al. Sonic while drilling: multipole acoustic tools for multiple answers[R]. SPE 128162, 2010.
    [5]
    朱祖扬,吴海燕,李永杰,等. 钻铤结构对随钻声波测井响应的影响[J]. 石油钻探技术,2016,44(6):117–122. doi: 10.11911/syztjs.201606020

    ZHU Zuyang, WU Haiyan, LI Yongjie, et al. The effect of collar structure on acoustic logging response while drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117–122. doi: 10.11911/syztjs.201606020
    [6]
    刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131.

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131.
    [7]
    刘西恩,孙志峰,仇傲,等. EXDT正交偶极阵列声波测井仪在地层各向异性评价中的应用[J]. 测井技术,2010,34(6):564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Application of the EXDT cross-dipole array acoustic logging tool to anisotropic formations evaluation[J]. Well Logging Technology, 2010, 34(6): 564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011
    [8]
    李世平,唐炼,丛健生. 叠片型多极子阵列声波测井仪接收换能器灵敏度分析[J]. 测井技术,2012,36(6):620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015

    LI Shiping, TANG Lian, CONG Jiansheng. Finite element analysis of receiving transducers for multipole acoustic array logging tool[J]. Well Logging Technology, 2012, 36(6): 620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015
    [9]
    JIANG Runkun, MEI Lei, LIU Xien, et al. Understanding logging-while-drilling transducers with COMSOL Multiphysics® software[C]//COMSOL Conference 2014, Boston: Monix Energy Solutions, Inc, 2014.
    [10]
    TANG X M, WANG T, PATTERSON D. Multipole acoustic logging-while-drilling[R]. SEG-2002-0364, 2002.
    [11]
    吴金平,乔文孝,车小花. 声波测井高灵敏度宽带接收器研究[J]. 中国石油大学学报(自然科学版),2014,38(6):54–60.

    WU Jinping, QIAO Wenxiao, CHE Xiaohua. Research on high-sensitivity and wide-band receiver used in acoustic well logging[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6): 54–60.
    [12]
    孙志峰,唐晓明,苏远大,等. 随钻多极子声波测井仪接收换能器的数值模拟[J]. 测井技术,2019,43(2):118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002

    SUN Zhifeng, TANG Xiaoming, SU Yuanda, et al. Numerical simulation of transducer of LWD multipole acoustic logging tool[J]. Well Logging Technology, 2019, 43(2): 118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002
    [13]
    栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 修订版. 北京: 北京大学出版社, 2005: 326-336.

    LUAN Guidong, ZHANG Jinduo, WANG Renqian. Transducers piezoelectric and arrays[M]. Revised ed. Beijing: Peking University Press, 2005: 326-336.
    [14]
    何晓,陈浩,王秀明. 充液圆槽中单极声波仪器响应数值模拟与分析[J]. 应用声学,2014,33(2):95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001

    HE Xiao, CHEN Hao, WANG Xiuming. Numerical simulations and analyses of monopole sonic logging responses in a liquid-loaded trough[J]. Journal of Applied Acoustics, 2014, 33(2): 95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001
    [15]
    吴金平,陆黄生,朱祖扬,等. 随钻声波测井声系短节模拟样机试验研究[J]. 石油钻探技术,2016,44(2):106–111. doi: 10.11911/syztjs.201602018

    WU Jinping, LU Huangsheng, ZHU Zuyang, et al. Experimental study on the simulation prototype of acoustic nipples for logging-while-drilling (LWD)[J]. Petroleum Drilling Techniques, 2016, 44(2): 106–111. doi: 10.11911/syztjs.201602018
    [16]
    朱祖扬,陆黄生,张卫,等. 随钻声波测井声系短节的研制与测试[J]. 石油钻探技术,2015,43(5):83–87. doi: 10.11911/syztjs.201505014

    ZHU Zuyang, LU Huangsheng, ZHANG Wei, et al. Development and testing of acoustic nipples while drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83–87. doi: 10.11911/syztjs.201505014
  • Related Articles

    [1]WANG Xiaojun, PING Shanhai, FU Yunbo, LI Ying, ZHANG Jianhui, DAI Yuncai. Development and Application of High Temperature Resistance and Anti-Sloughing Water-Based Drilling Fluid System[J]. Petroleum Drilling Techniques, 2025, 53(2): 62-68. DOI: 10.11911/syztjs.2025009
    [2]MING Yuguang, LAN Qiang, LI Hui, LIU Zhendong, BU Fankang. Research and Field Testing of High Temperature Resistant Foam Drilling Fluid in Deep Wells[J]. Petroleum Drilling Techniques, 2018, 46(6): 47-53. DOI: 10.11911/syztjs.2018139
    [3]MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, ZHANG Junjiang, WANG Lei, ZHAO Jinzhou. Development and Performance Evaluation of High Temperature Resistant Clean Fracturing Fluid System HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105-109. DOI: 10.11911/syztjs.201706019
    [4]XUE Wenjia. Synthesis and Properties of High Temperature Resistance and Environmental-Friendly Viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6): 67-73. DOI: 10.11911/syztjs.201606011
    [5]ZHANG Yaoyuan, MA Shuangzheng, WANG Guanxiang, HAN Xu, CUI Jie. A Study and Field Test for Solid-Free High Temperature Resistance Hydrophobic Association Polymer Drilling Fluid[J]. Petroleum Drilling Techniques, 2016, 44(6): 60-66. DOI: 10.11911/syztjs.201606010
    [6]JIANG Guancheng, HUANG Kai, LI Xinliang, DENG Zhengqiang, WANG Kai, ZHAO Li. Research on High Temperature Resistance and High-Density Clay-Free Diesel Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2016, 44(6): 24-29. DOI: 10.11911/syztjs.201606004
    [7]Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
    [8]Yang Xiaohua, Qian Xiaolin, Wang Lin, Wang Xianguang, Dong Xiaoqiang. Development and Application of an High Temperature Resistant Polymer PFL-L as Fluid Loss Additive[J]. Petroleum Drilling Techniques, 2012, 40(6): 8-12. DOI: 10.3969/j.issn.1001-0890.2012.06.002
    [9]Liu Xuepeng, Zhang Mingchang, Ding Shidong, Liu Wei, Wang Xiaojing. Synthesis and Properties of a High-Temperature Grafting Polyvinyl Alcohol Fluid Loss Additive[J]. Petroleum Drilling Techniques, 2012, 40(3): 58-61. DOI: 10.3969/j.issn.1001-0890.2012.03.012
    [10]Yang Xiaofeng. Application of High Temperature Resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119-122. DOI: 10.3969/j.issn.1001-0890.2012.01.024
  • Cited by

    Periodical cited type(12)

    1. 杨丽丽,王爱佳,蒋官澄,敖天,赵正国,唐润平. RAFT聚合制备嵌段聚合物结构对降滤失剂性能的影响. 钻井液与完井液. 2022(01): 23-28 .
    2. 高伟,李银婷,余福春,李双贵,毛惠. 抗超高温水基钻井液用聚合物降滤失剂的研制. 钻井液与完井液. 2021(02): 146-151+157 .
    3. 俞玲,刘卫红,许明标,宋建建,周文,邓亚慧. 用于油基钻井液堵漏的氯氧镁水泥浆体系. 钻井液与完井液. 2020(03): 332-336 .
    4. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 .
    5. 佟乐,雒旭,杨双春. 钻井液聚合物降滤失剂研究进展. 应用化工. 2018(07): 1523-1527 .
    6. 吴鑫磊,闫丽丽,王立辉,王发云. 环保型钻井液用降滤失剂研究进展. 钻井液与完井液. 2018(03): 8-16 .
    7. 王岩,孙金声,黄贤斌,刘敬平. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能. 钻井液与完井液. 2018(02): 23-28 .
    8. 鄢宇杰,汪淑敏,李永寿,付振永. 裂缝型碳酸盐岩纤维降滤失实验研究及应用. 断块油气田. 2017(04): 574-577 .
    9. 徐运波,蓝强,张斌,陈健,孙德军. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用. 钻井液与完井液. 2017(01): 33-38 .
    10. 秦波波,罗春芝,杨云峰. 水泥浆聚合物降滤失剂的合成及性能评价. 长江大学学报(自科版). 2016(04): 27-29+38+4 .
    11. 马康,姜汉桥,李俊键,方文超,张振涛,郭亮. 基于核磁共振的复杂断块油藏微观动用均衡程度实验. 断块油气田. 2016(06): 745-748 .
    12. 杨勇. 新型抗高温水泥悬浮剂的研制与现场试验. 石油钻探技术. 2016(03): 44-49 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (283) PDF downloads (41) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return