Citation: | ZHU Lei, CHEN Xuelian, ZHANG Xinlei, et al. Identification method of microannulus based on IBC and CBL/VDL logging [J]. Petroleum Drilling Techniques, 2024, 52(4):135-142. DOI: 10.11911/syztjs.2024023 |
To accurately study the influence of microannulus thickness on the evaluation of cementing quality by different logging instruments, this study analyzed the response characteristics of CBL/VDL logging casing waves, IBC-induced resonance waves, and flexural waves to the presence of microannulus. The study focused on how the microannulus between the casing and cement sheath as well as the density of the cement slurry, impacts these three wave modes. The findings reveal that the casing wave in CBL/VDL logging is consistently sensitive to the presence of microannulus, with amplitude increasing as the microannulus thickness (fluid-filled) grows. A microannulus as thin as 0.01 mm can cause the relative amplitude of the casing wave to reach 30%–50%, leading to an assessment of poor cement bonding. The resonance wave amplitude, however, is not significantly affected by microannulus thinner than 0.01 mm, and the attenuation of the flexural wave only slightly decreases when low-impedance cement is cemented behind casing. In contrast, when high-impedance cement (generally conventional cement and heavy cement) is coupled, the presence of microannulus markedly increases attenuation, causing the flexural wave to reach a high attenuation value. In gas-liquid-solid phase identification, the medium behind the casing is likely to be identified as solid cement, making the combination of CBL/VDL and IBC logging results effective for identifying microannulus intervals. Field oil test results from multiple wells show that wells with high CBL casing wave amplitudes and high flexural wave attenuation values consistently demonstrate better cement sealing capabilities, confirming that these logging responses are characteristic of microannulus. This method of microannulus identification, based on IBC and CBL/VDL logging avoids the traditional wellbore pressure logging method and obtains a good application effect, and it is worthy of promotion and application.
[1] |
谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术,2022,50(1):119–126. doi: 10.11911/syztjs.2022015
XIE Guanbao. Establishment of logging evaluation criteria for the cementing quality of low-density cement slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119–126. doi: 10.11911/syztjs.2022015
|
[2] |
吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65–70. doi: 10.11911/syztjs.2021111
WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65–70. doi: 10.11911/syztjs.2021111
|
[3] |
章成广,李维彦. 低密度固井质量声波测井评价方法研究[J]. 石油天然气学报,2005,27(4):450–454. doi: 10.3969/j.issn.1000-9752.2005.04.015
ZHANG Chengguang, LI Weiyan. Methods for evaluating low density cementing quality by acoustic logging[J]. Journal of Oil and Gas Technology, 2005, 27(4): 450–454. doi: 10.3969/j.issn.1000-9752.2005.04.015
|
[4] |
江万哲,章成广,陈义群. 低密度水泥固井对套管波幅度的影响及其校正方法[J]. 石油天然气学报,2008,30(5):77–80. doi: 10.3969/j.issn.1000-9752.2008.05.018
JIANG Wanzhe, ZHANG Chengguang, CHEN Yiqun. The casing wave amplitude impaction and method for correcting low density cementing[J]. Journal of Oil and Gas Technology, 2008, 30(5): 77–80. doi: 10.3969/j.issn.1000-9752.2008.05.018
|
[5] |
步玉环,宋文宇,何英君,等. 低密度水泥浆固井质量评价方法探讨[J]. 石油钻探技术,2015,43(5):49–55.
BU Yuhuan, SONG Wenyu, HE Yingjun, et al. Discussion of a method for evaluating cementing quality with low-density cement slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49–55.
|
[6] |
田鑫,章成广,毛志强. 低密度水泥固井质量评价方法研究[J]. 石油钻探技术,2006,34(6):36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012
TIAN Xin, ZHANG Chengguang, MAO Zhiqiang. An evaluation method for cementing operations with light weight cement[J]. Petroleum Drilling Techniques, 2006, 34(6): 36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012
|
[7] |
李韶利. 1.15 g/cm3超低密度水泥浆的研究与应用[J]. 钻井液与完井液,2020,37(5):644–650.
LI Shaoli. Study and application of an ultra-low-density cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 644–650.
|
[8] |
步玉环,沈兆超,王银东,等. 固井第一界面微环隙对声波传播规律的影响[J]. 石油钻探技术,2014,42(1):37–40. doi: 10.3969/j.issn.1001-0890.2014.01.007
BU Yuhuan, SHEN Zhaochao, WANG Yindong, et al. Effect of microannulus on sonic wave propagation at first cementing inter-face[J]. Petroleum Drilling Techniques, 2014, 42(1): 37–40. doi: 10.3969/j.issn.1001-0890.2014.01.007
|
[9] |
唐军,章成广,张碧星,等. 基于声波−变密度测井的固井质量评价方法[J]. 石油勘探与开发,2016,43(3):469–475.
TANG Jun, ZHANG Chengguang, ZHANG Bixing, et al. Cement bond quality evaluation based on acoustic variable density logging[J]. Petroleum Exploration and Development, 2016, 43(3): 469–475.
|
[10] |
解宇宁,周晓宇. 微环隙对声幅测井影响的定量计算及校正[J]. 石油钻探技术,2013,41(1):45–50. doi: 10.3969/j.issn.1001-0890.2013.01.009
XIE Yuning, ZHOU Xiaoyu. Quantitative calculation and correction of the influence of microannulus on acoustic amplitude log[J]. Petroleum Drilling Techniques, 2013, 41(1): 45–50. doi: 10.3969/j.issn.1001-0890.2013.01.009
|
[11] |
ZEROUG S, FROELICH B. Ultrasonic leaky-lamb wave imaging through a highly contrasting layer[C]//IEEE Symposium on Ultrasonics, 2003. Piscataway, NJ: IEEE, 2003: 794-798.
|
[12] |
陈雪莲,陶爱华,唐晓明,等. 套管井弯曲型Lamb波衰减测量的数值仿真和试验[J]. 中国石油大学学报(自然科学版),2020,44(3):47–55. doi: 10.3969/j.issn.1673-5005.2020.03.005
CHEN Xuelian, TAO Aihua, TANG Xiaoming, et al. Numerical simulation and experimental research on flexural Lamb-wave attenuation measurement in a cased well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(3): 47–55. doi: 10.3969/j.issn.1673-5005.2020.03.005
|
[13] |
侯振永,郝晓良,马焕英,等. 超声固井质量评价方法改进及应用[J]. 测井技术,2019,43(6):657–660.
HOU Zhenyong, HAO Xiaoliang, MA Huanying, et al. Improvement and application of the quality evaluation method for UIL cement bond[J]. Well Logging Technology, 2019, 43(6): 657–660.
|
[14] |
FROELICH B. Multimode evaluation of cement behind steel pipe[J]. The Journal of the Acoustical Society of America, 2008, 123(supplement 5): 3648.
|
[15] |
陈雪莲,唐晓明,刘临政. 套管中模式波的响应特征[J]. 应用声学,2020,39(1):1–8.
CHEN Xuelian, TANG Xiaoming, LIU Linzheng. Response characteristics of the model waves in the casing[J]. Journal of Applied Acoustics, 2020, 39(1): 1–8.
|
[16] |
陈雪莲,唐晓明,李盛清,等. 基于黏弹滑移界面理论揭示套管中模式波的传播特征[J]. 地球物理学报,2020,63(9):3562–3571. doi: 10.6038/cjg2020N0050
CHEN Xuelian, TANG Xiaoming, LI Shengqing, et al. Study on the propagation characteristics of the casing waves in cased wells by viscoelastic slip theory[J]. Chinese Journal of Geophysics, 2020, 63(9): 3562–3571. doi: 10.6038/cjg2020N0050
|
[1] | ZHU Lei, PAN Jinlin, CHEN Xuelian, MA Rui, TIAN Longmei, ZHOU Haodong. Influence of Casing and Cement Sheath Dimensions on Casing Waves in CBL/VDL Logging[J]. Petroleum Drilling Techniques, 2025, 53(1): 136-143. DOI: 10.11911/syztjs.2025016 |
[2] | SUN Qifeng, NI Hongsheng, YUE Xizhou, ZHANG Pengyun, GONG Faming. Inversion of Azimuthal Electromagnetic Wave Resistivity LWDBased on Deep Residual Network[J]. Petroleum Drilling Techniques, 2024, 52(5): 97-104. DOI: 10.11911/syztjs.2024089 |
[3] | WANG Wanjiang, LI Weiqin, LIU Changmin, WU Yuhan. Collaborative Relay Transmission Method for Downhole Surface Electromagnetic Waves[J]. Petroleum Drilling Techniques, 2024, 52(4): 143-150. DOI: 10.11911/syztjs.2024076 |
[4] | KANG Zhengming, QIN Haojie, ZHANG Yi, LI Xin, NI Weining, LI Fengbo. Data Inversion of Azimuthal Electromagnetic Wave Logging While Drilling Based on LSTM Neural Network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116-124. DOI: 10.11911/syztjs.2023047 |
[5] | LIU Tianlin, YUE Xizhou, LI Guoyu, MA Mingxue, WANG Yiyi. Study over the Geo-Signal Properties of Ultra-Deep Electromagnetic Wave Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41-48. DOI: 10.11911/syztjs.2022110 |
[6] | WU Baizhi, YANG Zhen, GUO Tongzheng, YUAN Xiyong. Response Characteristics of Logging While Drilling System with Multi-Scale Azimuthal Electromagnetic Waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7-13. DOI: 10.11911/syztjs.2022107 |
[7] | WANG Zhengxu, FANG Jun, PEI Kefei. Research on the Control Methods of a Drilling Fluid Continuous Wave Signal Generator[J]. Petroleum Drilling Techniques, 2018, 46(5): 121-126. DOI: 10.11911/syztjs.2018117 |
[8] | XIA Hongquan, HU Hui, YANG Lin, ZHAO Jing. Meathod about Improving Accuracy of Fracture Fluid Friction Pressure[J]. Petroleum Drilling Techniques, 2017, 45(5): 113-117. DOI: 10.11911/syztjs.201705020 |
[9] | Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011 |
[10] | Study of Compression Wave Caused by Hydraulic Cementing Tools[J]. Petroleum Drilling Techniques, 2011, 39(1): 105-109. DOI: 10.3969/j.issn.1001-0890.2011.01.022 |
1. |
朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 .
![]() |