LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling [J]. Petroleum Drilling Techniques,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110
Citation: LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling [J]. Petroleum Drilling Techniques,2022, 50(6):41-48. DOI: 10.11911/syztjs.2022110

Study over the Geo-Signal Properties of Ultra-Deep Electromagnetic Wave Logging While Drilling

More Information
  • Received Date: September 14, 2022
  • Revised Date: October 12, 2022
  • Available Online: November 06, 2022
  • In order to understand the characteristics and influencing factors of geo-signals of ultra-deep electromagnetic wave logging while drilling through interfaces, the analytical solution of multi-component electromagnetic wave logging in layered anisotropic media was adopted. On this basis, geo-signals of three structures including the axial transmitting and tilt receiving coil system of PeriScope, the tilt transmitting and tilt receiving coil system of DWPR, and the symmetrical measurement of GeoSphere were numerically simulated under a low frequency and long spacing condition of ultra-deep electromagnetic wave logging while drilling. The response characteristics through interfaces, depth of investigation (DOI), and influence of anisotropy of the geo-signals of the three structures were compared, and their applicabilities in ultra-deep detection were discussed. The study found that the geo-signals of the three structures could indicate stratigraphic interfaces and their orientations, and the non-monotonicity of the responses was apparent under long spacing and high frequency. Specifically, the monotonicity of the geo-signals by dual tilt coil system of DWPR was the strongest. Under a stratigraphic model with a resistivity ratio of 100:1, the geo-signals from GeoSphere had the largest DOI, and those from dual tilt coil system of DWPR took second place. The amplitude ratio geo-signals of the dual tilt coil system of DWPR were not influenced by the anisotropy of strata, while other geo-signals were all affected by the anisotropy of strata. The results showed that the DOI of the geo-signals could be effectively improved by lowering the frequency and enhancing the spacing, which was also beneficial to the monotonicity of the geo-signal responses to the stratigraphic interfaces, with the result that the anisotropy had influences on almost all geo-signals.

  • [1]
    BEER R, DIAS C T, DA CUNHA A M V, et al. Geosteering and/or reservoir characterization the prowess of new-generation LWD tools[R]. SPWLA-2010-93320, 2010.
    [2]
    CLEGG N, PARKER T, DJEFEL B, et al. The final piece of the puzzle: 3-D inversion of ultra-deep azimuthal resistivity LWD data[R]. SPWLA-2019-HHH, 2019.
    [3]
    CONSTABLE M, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: from vision to reality[R]. SPWLA-2016-MMMM, 2016.
    [4]
    WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.
    [5]
    LI Qiming, OMERAGIC D, CHOU L, et al. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[R]. SPWLA-2005-UU, 2005.
    [6]
    马明学,岳喜洲,李国玉. 基于倾斜发射-倾斜接收仪器结构进行随钻地质导向与地层各向异性评价[J]. 中国石油大学学报(自然科学版),2018,42(4):50–58.

    MA Mingxue, YUE Xizhou, LI Guoyu. Geosteering and anisotropic resistivity evaluation by using a tilted transmitter-tilted receiver tool structure[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4): 50–58.
    [7]
    岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920. doi: 10.6038/cjg2022P0233

    YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920. doi: 10.6038/cjg2022P0233
    [8]
    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.
    [9]
    BITTAR M, KLEIN J, BESTE R, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[R]. SPE 109971, 2007.
    [10]
    LI Shanjun, CHEN Jiefu, BINFORD T L, Jr, et al. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
    [11]
    WANG T, CHEMALI R, HART E, et al. Real-time formation imaging, dip, and azimuth while drilling from compensated deep directional resistivity[R]. SPWLA-2007-NNN, 2007.
    [12]
    HARTMANN A, VIANNA A, MAURER H M, et al. Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA-2014-MM, 2014.
    [13]
    王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715–1724. doi: 10.6038/cjg2020M0617

    WANG Lei, FAN Yiren, CAO Yingchang, et al. Real-time inversion of logging-while-drilling azimuthal electromagnetic measurements acquired in high-angle and horizontal wells[J]. Chinese Journal of Geophysics, 2020, 63(4): 1715–1724. doi: 10.6038/cjg2020M0617
    [14]
    LI Hu, ZHOU J. Distance of detection for LWD deep and ultra-deep azimuthal resistivity tools[R]. SPWLA-2017-PPPP, 2013.
    [15]
    HU Xufei, FAN Yiren. Huber inversion for logging-while-drilling resistivity measurements in high angle and horizontal wells[J]. Geophysics, 2018, 83(4): D113–D125. doi: 10.1190/geo2017-0459.1
    [16]
    WANG Lei, DENG Shaogui, ZHANG Pan, et al. Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements[J]. Petroleum Science, 2019, 16(5): 1015–1027. doi: 10.1007/s12182-019-00374-4
    [17]
    张盼,邓少贵,胡旭飞,等. 超深随钻方位电磁波测井探测特性及参数敏感性分析[J]. 地球物理学报,2021,64(6):2210–2219. doi: 10.6038/cjg2021O0087

    ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6): 2210–2219. doi: 10.6038/cjg2021O0087
    [18]
    黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [19]
    WILSON G, MARCHANT D, HABER E, et al. Real-time 3D inversion of ultra-deep resistivity logging-while-drilling data[R]. SPE 196141, 2019.
    [20]
    WU Zhenguan, LI Hu, HAN Yujiao, et al. Effects of formation structure on directional electromagnetic logging while drilling measurements[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110118. doi: 10.1016/j.petrol.2022.110118
    [21]
    ZHONG Lili, LI Jing, BHARDWAJ A, et al. Computation of triaxial induction logging tools in layered anisotropic dipping formations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1148–1163. doi: 10.1109/TGRS.2008.915749
    [22]
    HONG Decheng, XIAO Jiaqi, ZHANG Guoyan, et al. Characteristics of the sum of cross-components of triaxial induction logging tool in layered anisotropic formation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3107–3115. doi: 10.1109/TGRS.2013.2269714
  • Related Articles

    [1]XU Xiaokai, ZHAO Weina, ZHANG Jinyan, DONG Jingli, SUN Qingxi, WANG Lei. Recursive Algorithm for Electromagnetic Fields from Magnetic Dipole in Layered Triaxial Anisotropic Medium and Its Application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130-139. DOI: 10.11911/syztjs.2023117
    [2]HU Wenliang, ZHANG Guodong, LIU Baoyin, LUO Jian, WEI Xiaohan. Formation Anisotropy Characterization Method Based on Micro-Resistivity Imaging Logging[J]. Petroleum Drilling Techniques, 2023, 51(2): 125-130. DOI: 10.11911/syztjs.2023048
    [3]JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086
    [4]HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
    [5]XIA Hongquan, LIU Chang, LI Gaoren, JIANG Tingwei. A Logging Data-Based Calculation Method for the Horizontal TIV Formation In-Situ Stress[J]. Petroleum Drilling Techniques, 2019, 47(6): 67-72. DOI: 10.11911/syztjs.2019130
    [6]HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
    [7]GE Hongqi, JIN Kenian, WU Qinxuan. Fracture Prediction in a Carbonate Reservoir Based on Logging-Seismic Data[J]. Petroleum Drilling Techniques, 2017, 45(5): 118-126. DOI: 10.11911/syztjs.201705021
    [8]YANG Zhen, WEN Yi, XIAO Hongbing. A New Method of Detecting while Drilling Resistivity Anisotropy with Azimuthal Electromagnetic Wave Tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115-120. DOI: 10.11911/syztjs.201603021
  • Cited by

    Periodical cited type(8)

    1. 李丰波. 随钻多深度电阻率天线系研究与设计. 高技术通讯. 2025(01): 67-72 .
    2. 李丰波. 随钻多深度多频率电阻率测井设备关键技术研究. 高技术通讯. 2025(02): 198-204 .
    3. 许孝凯,赵伟娜,张晋言,董经利,孙清溪,王磊. 三轴各向异性层状介质磁偶极子源电磁场递推算法及应用. 石油钻探技术. 2024(01): 130-139 . 本站查看
    4. 孙琳钧,黄俊,何坤. 超深探测新型地质导向着陆技术的应用. 中国石油和化工标准与质量. 2024(06): 169-171 .
    5. 柳贡慧,查春青,陈添,汪伟. 深层超深层油气安全高效开发若干关键问题与新型解决方案. 石油钻探技术. 2024(02): 24-30 . 本站查看
    6. 艾昆,韩玉娇,高源. 随钻方位侧向电阻率测井电极系设计及响应模拟. 石油钻探技术. 2024(03): 127-136 . 本站查看
    7. 康正明,秦浩杰,张意,李新,倪卫宁,李丰波. 基于LSTM神经网络的随钻方位电磁波测井数据反演. 石油钻探技术. 2023(02): 116-124 . 本站查看
    8. 胡文亮,张国栋,刘保银,罗健,魏晓晗. 基于微电阻率成像测井的地层各向异性表征方法. 石油钻探技术. 2023(02): 125-130 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (407) PDF downloads (99) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return