AI Kun, HAN Yujiao, GAO Yuan. Electrode system design and response simulation of azimuthal lateral resistivity logging while drilling [J]. Petroleum Drilling Techniques, 2024, 52(3):127-136. DOI: 10.11911/syztjs.2023118
Citation: AI Kun, HAN Yujiao, GAO Yuan. Electrode system design and response simulation of azimuthal lateral resistivity logging while drilling [J]. Petroleum Drilling Techniques, 2024, 52(3):127-136. DOI: 10.11911/syztjs.2023118

Electrode System Design and Response Simulation of Azimuthal Lateral Resistivity Logging While Drilling

More Information
  • Received Date: February 18, 2023
  • Revised Date: January 03, 2024
  • Accepted Date: January 20, 2024
  • Available Online: January 28, 2024
  • Wireline logging in horizontal wells in high resistivity formations faces high risk,and its logging data are subject to serious lackage, which restricts accurate geosteering drilling and high-quality reservoir identification. Therefore, a novel electrode system of azimuthal lateral resistivity logging while drilling based on the non-contact coupling principle was proposed, with radial, longitudinal, and circumferential detection abilities. The effects of wellbore size, flushed zone resistivity, formation inclination, layer thickness, and surrounding rock resistivity on the detection results were investigated by using the three-dimensional finite element simulation method. The electrode system size and detection characteristics were determined, and the ambient impact calibration diagram was established. The simulation results show that the toroidal coil excitation instrument for azimuthal lateral resistivity logging while drilling has a shallow detection depth, which is generally less than that of the cable-type instrument, but it is less affected by intrusion during the drilling process. It can meet the needs of logging while drilling, has good longitudinal zone identification ability, and can define 0.5 m thin layers under the condition of high resistivity formation. With the help of quad azimuthal measurement, the position of high and low resistivity abnormal bodies can be well identified, and the formation inclination can be determined. The research results have important guiding significance for the structural parameter design of instruments for azimuthal lateral logging while drilling and exploring for high resistivity reservoirs.

  • [1]
    李辉,鄢志丹,刘长波,等. 随钻方位电阻率测井仪器响应数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(1):42–52.

    LI Hui, YAN Zhidan, LIU Changbo, et al. Numerical simulation of azimuthal resistivity LWD instrument responses[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(1): 42–52.
    [2]
    陈华,范宜仁,邓少贵,等. 水平井中随钻电阻率实时确定地层界面方法[J]. 吉林大学学报(地球科学版),2011,41(5):1623–1629.

    CHEN Hua, FAN Yiren, DENG Shaogui, et al. Methods for real-time determination of formation boundary with LWD resistivity logs in horizontal wells[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(5): 1623–1629.
    [3]
    吴进波,陈鸣,孙殿强,等. 随钻地层测试在大斜度井油基钻井液中的应用[J]. 石油钻采工艺,2022,44(2):178–185.

    WU Jinbo, CHEN Ming, SUN Dianqiang, et al. Application of formation testing while drilling in highly deviated wells with oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2022, 44(2): 178–185.
    [4]
    吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022,50(6):7–13.

    WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging while drilling system with multi-scale azimuthal electromagnetic waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7–13.
    [5]
    朱军,杨善森,刘刚,等. 随钻双侧向电阻率测井响应数值模拟分析[J]. 测井技术,2017,41(2):146–150.

    ZHU Jun, YANG Shansen, LIU Gang, et al. Numerical analysis of logging responses for dual laterolog resistivity logging-while-drilling tool[J]. Well Logging Technology, 2017, 41(2): 146–150.
    [6]
    朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40.

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.
    [7]
    刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022,50(6):41–48.

    LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41–48.
    [8]
    孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120.

    SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120.
    [9]
    REZMER-COOPER I, BRATTON T, KRABBE H. The use of resistivity-at-the-bit images and annular pressure while drilling in preventing drilling problems[J]. SPE Drilling & Completion, 2001, 16(1): 35–42.
    [10]
    TRIBE I, HOLM G, HARKER S, et al. Optimized horizontal well placement in the Otter Field, North Sea using new formation imaging while drilling technology[R]. SPE 83968, 2003.
    [11]
    ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[R]. SPWLA-2011-LLL, 2011.
    [12]
    PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.
    [13]
    张海波,窦修荣,王志国,等. 国外随钻成像技术研究进展及展望[J]. 国外测井技术,2019,40(5):28–32.

    ZHANG Haibo, DOU Xiurong, WANG Zhiguo, et al. The research progress and prospects of imaging while drilling technology[J]. World Well Logging Technology, 2019, 40(5): 28–32.
    [14]
    朱军,李安宗,陈鹏,等. GRT随钻侧向电阻率测井响应数值模拟研究[C]//第十八届测井年会论文集. 北京:中国石油学会,2013:61-70.

    ZHU Jun, LI Anzong, CHENG Peng, et al. Numerical simulation study of GRT lateral resistivity logging response with drilling[C]//Collected Papers of the 18th Annual Well Logging Conference. Beijing: Chinese Petroleum Society, 2013: 61-70.
    [15]
    李铭宇,柯式镇,康正明,等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术,2018,46(1):128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
    [16]
    李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术,2014,38(4):407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging responses for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
    [17]
    李新,倪卫宁,米金泰,等. 一种基于非接触耦合原理的新型随钻微电阻率成像仪器[J]. 中国石油大学学报(自然科学版),2020,44(6):46–52.

    LI Xin, NI Weining, MI Jintai, et al. A novel high-resolution resistivity imaging while drilling tool based on contactless coupling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 46–52.
    [18]
    GIANZERO S, CHEMALI R, LIN Y Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
    [19]
    闫伟,孟祥龙,冯永存,等. 砂砾岩电阻率与岩石力学参数相关性研究[J]. 石油钻采工艺,2022,44(1):9–14.

    YAN Wei, MENG Xianglong, FENG Yongcun, et al. Study on correlation between glutenite resistivity and rock mechanical parameters[J]. Oil Drilling & Production Technology, 2022, 44(1): 9–14.
    [20]
    李大潜,郑宋穆,谭永基,等. 有限元素法在电测井中的应用[M]. 北京:石油工业出版社,1980.

    LI Daqian, ZHENG Songmu, TAN Yongji, et al. Application of finite element method in electrical logging[M]. Beijing: Petroleum Industry Press, 1980.
    [21]
    WANG H M, SHEN L C, ZHANG G J. Dual laterolog response in 3-D environments[R]. SPWLA-1998-X, 1998.
  • Related Articles

    [1]QIN Jianyu, LI Bo, RAO Zhihua, JIN Yong, ZHANG Yong, LIU Yongfeng. Key Cementing Technologies for an Ultra-Deep Extended Reach Well in Enping 21–4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 30-37. DOI: 10.11911/syztjs.2025026
    [2]YI Ming, DAI Yong, YANG Huanqiang, NAN Yadong, JI Mengjia, MEI Yuntao. Wellbore Pressure Control Technologies while Running Managed Pressure Casing with Negative Pressure Window[J]. Petroleum Drilling Techniques, 2024, 52(1): 17-25. DOI: 10.11911/syztjs.2023106
    [3]ZHANG Xinliang, JIN Lei, ZHANG Rui, ZHANG Guanlin, FENG Liying. Key Technologies for Casing Running with Double Floating Collars in Middle and Deep Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(6): 57-63. DOI: 10.11911/syztjs.2023053
    [4]SHI Peiming, LI Xiaoming, NI Huafeng, SHI Chongdong, JIANG Qingbo, CHENG Hualin. Casing Program Optimization and Drilling Matching Technologies for Horizontal Wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29-36. DOI: 10.11911/syztjs.2021057
    [5]CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
    [6]HU Daliang, OU Biao, HE Long, XIAO Guoyi, LI Wensheng, TANG Yuxiang. Casing Program Optimization and Drilling Matching Technologies for Marine Ultra-Deep Highly Deviated Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22-28. DOI: 10.11911/syztjs.2020053
    [7]LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105
    [8]WANG Bo, WANG Xu, XING Zhiqian, YUAN Zongling, LI Shijie. Drilling and Completion Technologies of Extended-Reach Wells in the Artificial Island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42-46. DOI: 10.11911/syztjs.2018118
    [9]Liang Erguo, Li Zifeng, Wang Changjin, Han Dongying. Casing Abrasion Prediction for Deep and Extended Reach Wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.02.013
    [10]Chen Shu, Zhang Wenhua, Wang Lei, Li Wanjun, Yang Guobin. Casing Running Technology for High Horizontal-Displacement to Vertical-Depth Ratio 3D Shallow Layer Horizontal Well in Venezuela[J]. Petroleum Drilling Techniques, 2013, 41(1): 56-60. DOI: 10.3969/j.issn.1001-0890.2013.01.011
  • Cited by

    Periodical cited type(47)

    1. 申金伟,郭布民,陈玲,赵健,张康,潘江浩,豆连营,李栓,许田鹏. 鄂尔多斯盆地东缘深煤层用一体化变黏压裂液研究及应用. 山东化工. 2024(12): 186-188 .
    2. 冯奇,蒋官澄,张朔,黄胜铭,王全得,王文卓. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用. 钻井液与完井液. 2024(03): 405-413 .
    3. 程长坤,张成娟,赵文凯,王志晟,隋国杰,刘欢. 多效变黏滑溜水稠化剂制备与性能评价. 精细石油化工. 2023(03): 12-17 .
    4. 赵伟,杨永,尹崇烈. 页岩气EDR-1滑溜水压裂液开发与现场应用. 石油工业技术监督. 2023(05): 58-62+68 .
    5. 许可,高航,石阳,刘臣,赖建林,葛婧楠,王皓霁. 储层改造用滑溜水压裂液性能研究进展. 应用化工. 2023(05): 1519-1524 .
    6. 葛欣. 新型一体化缔合压裂液性能分析与应用评价. 中外能源. 2023(08): 58-62 .
    7. 李宪文,徐晓晨,王文雄,胡子见,古永红,叶亮,马利静. 超低渗储层压裂液返排特性及组成变化研究. 工程热物理学报. 2023(08): 2153-2160 .
    8. 范克明,尚宏志,杜辉,朱文波,裴涛. 压裂返排液对不携砂滑溜水压裂液性能影响研究. 采油工程. 2022(01): 25-29+83 .
    9. 袁冬,卢刚,杜林. 一体化可变黏滑溜水在川西致密气井的先导试验. 石油化工应用. 2022(05): 51-55 .
    10. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    11. 薛新茹,李艳琦,孙铭辰. 聚丙烯酰胺类乳液型降阻剂的研制与应用. 精细石油化工. 2022(04): 23-26 .
    12. 刘晓瑞,刘利锋,傅鹏,李小玲,石华强,张雯娟. 抗盐速溶型减阻剂的制备及性能评价. 精细石油化工. 2022(04): 31-35 .
    13. 麦尔耶姆古丽·安外尔,蒲迪,翟怀建,刘宽,邬国栋,余波,金诚. 悬浮液基高效减阻携砂压裂液的研发与应用. 油田化学. 2022(03): 387-392+400 .
    14. 徐太平,李栓,周京伟,袁发明. 滑溜水压裂液用乳液降阻剂的合成及应用. 精细石油化工. 2022(06): 23-27 .
    15. 武绍杰. 液态二氧化碳在缝网压裂中的研究与应用. 采油工程. 2022(02): 12-18+89 .
    16. 何静,王满学,吴金桥,范昊坤,郭锦涛. 微乳液聚合物FRSP-1水溶液的流变特性研究. 精细石油化工. 2021(01): 63-67 .
    17. 陈昊,毕凯琳,张军,刘虎子,张胜,冯玉军. 非常规油气开采压裂用减阻剂研究进展. 油田化学. 2021(02): 347-359 .
    18. 刘福建,王立祥,杜良军,刘挺,张磊,刘斌. 耐盐型悬浮分散聚合物体系的制备及在盐水基变黏滑溜水体系中的应用. 钻井液与完井液. 2021(04): 504-509 .
    19. 赵玉东. 低伤害高效清洁滑溜水压裂液体系研制与应用. 大庆石油地质与开发. 2020(05): 65-71 .
    20. 刘建坤,蒋廷学,卞晓冰,苏瑗,刘世华,魏娟明. 常压页岩气低成本高效压裂技术对策. 钻井液与完井液. 2020(03): 377-383 .
    21. 张扬,赵永刚,闫永强,王海兵,杨晓影,王强. 页岩储层新型清洁滑溜水压裂液体系. 钻采工艺. 2020(04): 89-92+11 .
    22. 孟强,范锦锋,艾生军,刘刚,杨文斌,吴昊. 新型高效减阻剂研究及应用. 钻采工艺. 2020(04): 97-100+12 .
    23. 李嘉,李德旗,孙亚东,李然,张祥枫. 可变黏多功能压裂液体系及应用. 钻采工艺. 2020(04): 105-107+12 .
    24. 甄怀宾,陈帅,贾振福,李曙光,余丽珠. 致密气藏用乳液清洁压裂液的研究与应用. 应用化工. 2020(S1): 62-65+70 .
    25. 张晓虎,于世虎,周仲建,孙亚东,李嘉. 页岩气井用乳液型超分子压裂液制备与应用. 钻井液与完井液. 2019(01): 120-125 .
    26. 何静,王满学,吴金桥,王敏. 多功能滑溜水减阻剂的制备及性能评价. 油田化学. 2019(01): 48-52 .
    27. 闫秀,陈孝红,胡光,王冰,魏巍. FLICK减阻剂低温低伤害滑溜水研究与现场应用. 化学世界. 2019(05): 315-320 .
    28. 吴安林,李嘉,孙亚东,张晓虎,于世虎. 威远区块复合压裂液体系性能评价与应用. 新疆石油天然气. 2019(02): 85-87+5 .
    29. 贾金亚,魏娟明,贾文峰,眭世元,王程程,赵雄虎,穆代峰. 页岩气压裂用滑溜水胶液一体化稠化剂研究. 应用化工. 2019(06): 1247-1250 .
    30. 张锦宏. 中国石化石油工程技术现状及发展建议. 石油钻探技术. 2019(03): 9-17 . 本站查看
    31. 周仲建,于世虎,张晓虎. 页岩气用复合增效压裂液的研究与应用. 钻采工艺. 2019(04): 89-92+11-12 .
    32. 杨国旗,刘芳,程刚. 非常规天然气储层改造所用减阻剂的研究现状. 化工技术与开发. 2018(02): 41-42+51 .
    33. 李永飞,王彦玲,曹勋臣,刘飞,金碧涛,王刚霄. 页岩储层压裂用减阻剂的研究及应用进展. 精细化工. 2018(01): 1-9 .
    34. 陈馥,何雪梅,卜涛,吴红军,杨洋. 耐盐减阻剂的制备及性能评价. 精细石油化工. 2018(01): 51-55 .
    35. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
    36. 冯潇霄,谢佩兰,代晓东,张忠达,王艳丽,杨光辉,李义扬. 液相流体加剂减阻相关理论及其应用进展. 节能. 2017(03): 4-8+2 .
    37. 李旭晖,郭丽梅,管保山,梁利,刘萍. 一种抗盐型丙烯酰胺共聚物的合成与评价. 石油化工. 2017(10): 1313-1318 .
    38. 黄召,何福耀,雷磊,丁建平,严维锋,谢中成. 新型高效抗磨减阻剂在东海油气田的应用. 钻井液与完井液. 2017(04): 49-54 .
    39. 孟磊,周福建,刘晓瑞,杨钊,石华强. 滑溜水用减阻剂室内性能测试与现场摩阻预测. 钻井液与完井液. 2017(03): 105-110 .
    40. 张锋三,沈一丁,王磊,马国艳,苏莹,任婷. 聚丙烯酰胺压裂液减阻剂的合成及性能. 化工进展. 2016(11): 3640-3644 .
    41. 马国艳,沈一丁,李楷,王小荣,郭兴. 滑溜水压裂液用聚合物减阻剂性能. 精细化工. 2016(11): 1295-1300 .
    42. 张锋三,沈一丁,任婷,苏莹. 聚丙烯酰胺压裂液减阻剂的合成及性能. 精细化工. 2016(12): 1422-1427 .
    43. 张亚东,苏雪霞,孙举,姜江. 国内压裂用减阻剂的研究及应用进展. 精细石油化工进展. 2016(04): 8-11 .
    44. 苏雪霞,李晓岚,孙举,谢娟,宋亚静. 耐盐速溶减阻剂的合成及其性能. 精细石油化工. 2016(06): 51-55 .
    45. 杨帆,王琳,林永学,杨小华,董晓强,王海波. 减阻水压裂液用黏土稳定剂的合成与应用. 钻井液与完井液. 2016(04): 109-113 .
    46. 张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究——以吉林油田外围井区为例. 非常规油气. 2015(05): 55-60 .
    47. 杜凯,林蔚然,祝纶宇,刘希,杜超,方昭. 生物基反相乳液型降阻剂与滑溜水体系的研发与评价. 化工新型材料. 2015(05): 215-217 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (199) PDF downloads (89) Cited by(66)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return