Citation: | HU Wenliang, ZHANG Guodong, LIU Baoyin, et al. Formation anisotropy characterization method based on micro-resistivity imaging logging [J]. Petroleum Drilling Techniques,2023, 51(2):125-130. DOI: 10.11911/syztjs.2023048 |
Anisotropy is an inherent property of the formation. In highly deviated wells and horizontal wells, the anisotropy coefficient can be calculated by using the difference information of electromagnetic wave logging curves while drilling. In slightly deviated wells, anisotropy has no obvious influence on resistivity. The traditional method of calculating formation anisotropy coefficients by using difference information is no longer applicable. In this paper, the high-resolution characteristics of micro-resistivity imaging logging and local measurement characteristics in different directions were used to divide the image gray scale, and the equivalent resistivity volume model was established to further calculate the equivalent horizontal resistivity and vertical resistivity, so as to obtain the anisotropy coefficient of the reservoir. The obtained anisotropy coefficient was compared with the anisotropy coefficient calculated with the resistivity while drilling of drilled wells, and the two were in good agreement. In addition, the resolution of the anisotropy coefficient calculated by the micro-resistivity imaging was higher, which could well reflect the anisotropy characteristics of fractures, holes, and heterogeneous well sections, and provide a new method for evaluating the formation anisotropy.
[1] |
SUN Keli, OMERAGIC D, MINH C C, et al. Evaluation of resistivity anisotropy and formation dip from directional electromagnetic tools while drilling[R]. SPWLA-2010-26011, 2010.
|
[2] |
李潮流,袁超,李霞,等. 致密砂岩电学各向异性测井评价与声电各向异性一致性分析[J]. 石油勘探与开发,2020,47(2):427–434. doi: 10.11698/PED.2020.02.22
LI Chaoliu, YUAN Chao, LI Xia, et al. Anisotropy interpretation and the coherence research between resistivity and acoustic anisotropy in tight sands[J]. Petroleum Exploration and Development, 2020, 47(2): 427–434. doi: 10.11698/PED.2020.02.22
|
[3] |
夏宏泉,刘畅,李高仁,等. 基于测井资料的TIV地层水平地应力计算方法[J]. 石油钻探技术,2019,47(6):67–72.
XIA Hongquan, LIU Chang, LI Gaoren, et al. A logging data-based calculation method for the horizontal TIV formation in-situ stress[J]. Petroleum Drilling Techniques, 2019, 47(6): 67–72.
|
[4] |
BITTAR M S, HU Guoyu. The effects of rock anisotropy on LWD toroidal resistivity sensors[R]. SPWLA-2004-WW, 2004.
|
[5] |
刘云鹤,殷长春,蔡晶,等. 电磁勘探中各向异性研究现状和展望[J]. 地球物理学报,2018,61(8):3468–3487.
LIU Yunhe, YIN Changchun, CAI Jing, et al. Review on research of electrical anisotropy in electromagnetic prospecting[J]. Chinese Journal of Geophysics, 2018, 61(8): 3468–3487.
|
[6] |
王磊,范宜仁,黄瑞,等. 各向异性介质多分量感应测井三维Born几何因子理论研究?[J]. 物理学报,2015,64(23):239301. doi: 10.7498/aps.64.239301
WANG Lei, FAN Yiren, HUANG Rui, et al. Three dimensional Born geometrical factor of multi-component induction logging in anisotropic media[J]. Acta Physica Sinica, 2015, 64(23): 239301. doi: 10.7498/aps.64.239301
|
[7] |
岳喜洲,马明学,李国玉. 随钻电磁波电阻率测井曲线分离关系研究[J]. 石油管材与仪器,2016,2(2):53–56. doi: 10.3969/j.issn.1004-9134.2016.02.013
YUE Xizhou, MA Mingxue, LI Guoyu. Study on relationships of the separated curves in resistivity logging while drilling[J]. Petroleum Tubular Goods & Instruments, 2016, 2(2): 53–56. doi: 10.3969/j.issn.1004-9134.2016.02.013
|
[8] |
刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022,50(6):41–48. doi: 10.11911/syztjs.2022110
LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41–48. doi: 10.11911/syztjs.2022110
|
[9] |
YOON D, ZHDANOV M S, MATTSSON J, et al. A hybrid finite-difference and integral-equation method for modeling and inversion of marine controlled-source electromagnetic data[J]. Geophysics, 2016, 81(5): E323–E336. doi: 10.1190/geo2015-0513.1
|
[10] |
翟金海, 聂在平, 孙向阳, 等. 油基泥浆微电阻率扫描测井方法建模及仿真[J]. 电波科学学报, 2011, 26(增刊1): 311−313.
ZHAI Jinhai, NIE Zaiping, SUN Xiangyang, et al. Modeling and simulation for oil-based mud logging[J]. Chinese Journal of Radio Science, 2011, 26(supplement 1): 311−313.
|
[11] |
路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术,2019,47(1):1–7.
LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7.
|
[12] |
郭书生,高永德,曲长伟,等. 南海西部乌石凹陷流沙港组二段储层精细表征[J]. 中国海上油气,2019,31(2):39–50. doi: 10.11935/j.issn.1673-1506.2019.02.005
GUO Shusheng, GAO Yongde, QU Changwei, et al. Fine characterization of the second member of Liushagang Formation in Wushi Sag, western South China Sea[J]. China Offshore Oil and Gas, 2019, 31(2): 39–50. doi: 10.11935/j.issn.1673-1506.2019.02.005
|
[13] |
胡松,王晓畅,孔强夫. 水平井随钻电磁波电阻率数值模拟[J]. 科学技术与工程,2017,17(14):59–66.
HU Song, WANG Xiaochang, KONG Qiangfu. Numerical simulation of LWD resistivity in horizontal wells[J]. Science Technology and Engineering, 2017, 17(14): 59–66.
|
[14] |
李飞虎,张中庆,王卓远. 用矢量棱边元素法模拟三维感应测井响应[J]. 复旦学报(自然科学版),2009,48(5):560–566.
LI Feihu, ZHANG Zhongqing, WANG Zhuoyuan. Application of the vector finite element method to 3-D induction well logging problems[J]. Journal of Fudan University(Natural Science), 2009, 48(5): 560–566.
|
[15] |
黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132
HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
|
[16] |
乐友喜,陈艺都,吴佳伟,等. 自适应整形正则化迭代最小二乘谱反演方法[J]. 中国石油大学学报(自然科学版),2022,46(3):54–61.
LE Youxi, CHEN Yidu, WU Jiawei, et al. Iterative least squares spectrum inversion based on adaptive shaping regularization[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 54–61.
|
[17] |
范宜仁,吴易智,李潮流,等. 斜井各向异性地层阵列侧向测井资料快速分级反演方法[J]. 中国石油大学学报(自然科学版),2021,45(3):65–74.
FAN Yiren, WU Yizhi, LI Chaoliu, et al. Fast hierarchical inversion for array lateral logging data of anisotropic formation in deviated well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(3): 65–74.
|
[18] |
张中庆,穆林雪,张雪,等. 矢量有限元素法在随钻电阻率测井模拟中的应用[J]. 中国石油大学学报(自然科学版),2011,35(4):64–71.
ZHANG Zhongqing, MU Linxue, ZHANG Xue, et al. Application of vector finite element method to simulate logging-while-drilling resistivity tools[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(4): 64–71.
|
1. |
张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
![]() | |
2. |
张炜,王海华,翁炜,姚树青,邵明娟. 美国能源部地热钻井技术研发最新部署及干热岩开发示范创新实践. 钻探工程. 2024(03): 1-8 .
![]() | |
3. |
戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 .
![]() | |
4. |
李宽,施山山,张新刚,王跃伟,许洁,张恒春. 干热岩定向钻井关键技术研究与应用. 钻采工艺. 2024(05): 7-14 .
![]() | |
5. |
王瑞,韩子剑,雷鸣,夏杨,张益华,陈子豪,王鹏. 废弃油井改地热井的井筒传热规律分析. 钻采工艺. 2023(05): 54-60 .
![]() | |
6. |
周乐. 高温地热高效开发钻井关键技术探究. 云南化工. 2022(01): 125-126 .
![]() | |
7. |
李根生,武晓光,宋先知,周仕明,李铭辉,朱海燕,孔彦龙,黄中伟. 干热岩地热资源开采技术现状与挑战. 石油科学通报. 2022(03): 343-364 .
![]() | |
8. |
曹华庆,吴波,龙志平,王殿学,黄干廷,马向东. 京津冀岩溶热储钻井关键技术. 石油钻探技术. 2021(02): 42-47 .
![]() | |
9. |
贺志铎. 干热岩开发及发电技术应用分析. 云南化工. 2021(05): 98-100 .
![]() | |
10. |
刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系. 钻井液与完井液. 2021(04): 412-422 .
![]() | |
11. |
郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 .
![]() | |
12. |
谢文苹,路睿,张盛生,朱进守,于漂罗,张珊珊. 青海共和盆地干热岩勘查进展及开发技术探讨. 石油钻探技术. 2020(03): 77-84 .
![]() | |
13. |
窦凤珂. 干热岩勘查及开发利用的关键技术. 化工设计通讯. 2020(10): 157-158 .
![]() | |
14. |
王恒,王磊,张东清,张进双. 干热岩钻井钻具磨损及防磨技术研究. 石油钻探技术. 2020(06): 47-53 .
![]() |