XIE Wenping, LU Rui, ZHANG Shengsheng, ZHU Jinshou, YU Piaoluo, ZHANG Shanshan. Progress in Hot Dry Rock Exploration and a Discussion on Development Technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77-84. DOI: 10.11911/syztjs.2020042
Citation: XIE Wenping, LU Rui, ZHANG Shengsheng, ZHU Jinshou, YU Piaoluo, ZHANG Shanshan. Progress in Hot Dry Rock Exploration and a Discussion on Development Technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77-84. DOI: 10.11911/syztjs.2020042

Progress in Hot Dry Rock Exploration and a Discussion on Development Technology in the Gonghe Basin of Qinghai

More Information
  • Received Date: November 24, 2019
  • Revised Date: April 10, 2020
  • Available Online: May 07, 2020
  • Due to the fact that exploration, development and utilization of hot dry rock for geothermal energy in China are still in their initial stage, it is necessary to overcome problems such as low levels of exploration, unclear heat source mechanism, the high cost of high-temperature drilling, the low efficiency of heat transfer technology and risks of induced earthquakes, etc. On the basis of analyzing the exploration and development history of hot dry rock at home and abroad, the geological features and current exploration situation of hot dry rock in the Gonghe Basin, this paper discusses and studies establishes the prospecting indicators of dry hot rock. This paper takes into consideration well temperature measurement and geothermal gradient calculation, and the contribution of radioactive heat generation to the dry hot rock heat source in the Gonghe Basin. It then preliminarily analyzes and compares the features and difficulties of enhanced geothermal system (EGS) and single well heat transfer. It also analyzes the problems in fracturing well pattern technology and the relationship between fracturing and induced earthquake, and puts forward some suggestions for the construction of development test demonstration base. The result has provided a theoretical basis for exploration and development of hot dry rock in the Gonghe Basin.

  • [1]
    BROWN D. The US hot dry rock program: 20 years of experience in reservoir testing[C]//Proceedings of World Geothermal Congress. Florence, Italy, 1995: 2607–2611.
    [2]
    张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190–198.

    ZHANG Ying, FENG Jianyun, HE Zhiliang, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190–198.
    [3]
    POLSKY Y, CAPUANO L Jr, FINGER J, et al. Enhanced geothermal systems (EGS) well construction technology evaluation report[J]. Physical Review D, 2008, 17(10): 2529–2551.
    [4]
    KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill[J]. Geothermics, 2016, 63: 5–14. doi: 10.1016/j.geothermics.2015.08.008
    [5]
    BATCHELOR A S. The stimulation of a hot dry rock geothermal reservoir in the Cornubian Granite, England[C]//The 8th Workshop on Geothermal Reservoir Engineering. California: Stanford University Press, 1982: 237–248.
    [6]
    HORI Y, KITANO K, KAIEDA H, et al. Present status of the Ogachi HDR Project, Japan, and future plans[J]. Geothermics, 1999, 28(4): 637–645.
    [7]
    KIHO K. Study on surface area estimation of the Ogachi HDR reservoir by geochemical method: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10, 2000[C].
    [8]
    QUIGLEY M C, CLARK D, SANDIFORD M. Tectonic geomorphology of Australia[J]. Geological Society, 2010, 346(1): 243–265. doi: 10.1144/SP346.13
    [9]
    OSKOOI B, MANZELLA A. 2D inversion of the magnetotelluric data from Travale Geothermal Field in Italy[J]. Journal of the Earth & Space Physics, 2011, 36(4): 1–18.
    [10]
    董颖, 郑克棪, 田廷山.干热岩发电技术理论与实践[M].北京: 地质出版社, 2016: 1–172.

    DONG Ying, ZHENG Keyan, TIAN Tingshan. Theory and practice of hot dry rock technology for power generation[M]. Beijing: Geological Publishing House, 2016: 1–172.
    [11]
    蔺文静,刘志明,马峰,等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807–811. doi: 10.3975/cagsb.2012.05.12

    LIN Wenjing, LIU Zhiming, MA Feng, et al. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807–811. doi: 10.3975/cagsb.2012.05.12
    [12]
    樊冬艳,孙海,姚军,等. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797–806.

    FAN Dongyan, SUN Hai, YAO Jun, et al. Parametric analysis of different injection and production well pattern in enhanced geothermal system[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3): 797–806.
    [13]
    付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540.

    FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
    [14]
    陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
    [15]
    曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
    [16]
    骆必继,张宏飞,肖尊奇. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 2012, 19(3): 199–213.

    LUO Biji, ZHANG Hongfei, XIAO Zunqi. Petrogenesis and tectonic implications of the Early Indosinian Meiwu Pluton in West Qinling, central China[J]. Earth Science Frontiers, 2012, 19(3): 199–213.
    [17]
    张国伟,郭安林,姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23–32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    ZHANG Guowei, GUO Anlin, YAO Anping. Western Qinling-Songpan continental tectonic node in China’s continental tecto-nics[J]. Earth Science Frontiers, 2004, 11(3): 23–32. doi: 10.3321/j.issn:1005-2321.2004.03.004
    [18]
    陈岳龙,周建,皮桥辉,等. 青海共和–花石峡三叠纪碎屑沉积岩的地球化学特征与锆石U-Pb年龄及地质意义[J]. 地学前缘, 2009, 16(2): 161–174. doi: 10.3321/j.issn:1005-2321.2009.02.012

    CHEN Yuelong, ZHOU Jian, PI Qiaohui, et al. Zircon U-Pb dating and geochemistry of clastic sedimentary rocks in the Gonghe-Huashixia Area Qinghai Province and their geological implica-tions[J]. Earth Science Frontiers, 2009, 16(2): 161–174. doi: 10.3321/j.issn:1005-2321.2009.02.012
    [19]
    张超,张盛生,李胜涛,等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 2018, 61(11): 4545–4557. doi: 10.6038/cjg2018L0747

    ZHANG Chao, ZHANG Shengsheng, LI Shengtao, et al. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe Basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2018, 61(11): 4545–4557. doi: 10.6038/cjg2018L0747
    [20]
    严维德,王焰新,高学忠,等. 共和盆地地热能分布特征与聚集机制分析[J]. 西北地质, 2013, 46(4): 223–230. doi: 10.3969/j.issn.1009-6248.2013.04.022

    YAN Weide, WANG Yanxin, GAO Xuezhong, et al. Distribution and aggregation mechanism of geothermal energy in Gonghe Basin[J]. Northwestern Geology, 2013, 46(4): 223–230. doi: 10.3969/j.issn.1009-6248.2013.04.022
    [21]
    薛建球,甘斌,李百祥,等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 2013, 37(1): 35–41. doi: 10.11720/wtyht.2013.1.06

    XUE Jianqiu, GAN Bin, LI Baixiang, et al. Geological-Geophysical characteristics of enhanced geothermal systems (hot dry rocks) in Gonghe-Guide Basin[J]. Geophysical and Geochemical Exploration, 2013, 37(1): 35–41. doi: 10.11720/wtyht.2013.1.06
    [22]
    张雪亭, 杨生德, 杨站君.青海省板块构造研究1∶100万青海省大地构造图说明书[M].北京: 地质出版社, 2007.

    ZHANG Xueting, YANG Shengde, YANG Zhanjun. The plate tectonics of Qinghai Province: a guide to the geotectonic map of Qinghai Province[M]. Beijing: Geological Publishing House, 2007.
    [23]
    李德威,王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学, 2015, 40(11): 1858–1869.

    LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science, 2015, 40(11): 1858–1869.
    [24]
    张森琦,文冬光,许天福,等. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321–334.

    ZHANG Senqi, WEN Dongguang, XU Tianfu, et al. The U.S. frontier observatory for research in geothermal energy project and comparison of typical EGS site exploration status in China and U.S.[J]. Earth Science Frontiers, 2019, 26(2): 321–334.
    [25]
    许天福,胡子旭,李胜涛,等. 增强型地热系统:国际研究进展与我国研究现状[J]. 岩石学报, 2018, 92(9): 1936–1947.

    XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced geothermal system: international progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936–1947.
    [26]
    饶松,胡圣标,朱传庆,等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760–2770. doi: 10.6038/cjg20130824

    RAO Song, HU Shengbiao, ZHU Chuanqing, et al. The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophysics, 2013, 56(8): 2760–2770. doi: 10.6038/cjg20130824
    [27]
    ZHANG C, JIANG G Z, SHI Y Z, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide Area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72: 182–192. doi: 10.1016/j.geothermics.2017.11.011
    [28]
    张森琦,严维德,黎敦朋,等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087–1102.

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087–1102.
    [29]
    RYBACH L. Determination of heat production rate[M]//HAENEL R, RYBACH L, STEGENA L. Handbook of terrestrial heat flow density determination: with guidelines and recommendations of the international heat-flow commission. Dordrecht: Springger Netherlands, 1988: 125-142.
    [30]
    管彦武,管烨,高瑞,等. 根据地震纵波速度分析青藏高原地壳放射性生热率和地幔热状态[J]. 吉林大学学报(地球科学版), 2012, 42(2): 562–568, 574.

    GUAN Yanwu, GUAN Ye, GAO Rui, et al. Crustal radio genic heat and mantle geothermal status in Tibetan Plateau based on p-wavevelocity[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 562–568, 574.
    [31]
    MCLAREN S, SANDIFORD M, HAND M, et al. The hot southern continent: heat flow and heat production in Australian Proterozoic terranes[J]. Geological Society of America Special Papers, 2003, 372(22): 151–161.
    [32]
    高山,张本仁. 秦岭造山带及共邻区岩石的放射性与岩石圈的现代热结构和热状态[J]. 地球化学, 1993(3): 241–251. doi: 10.3321/j.issn:0379-1726.1993.03.005

    GAO Shan, ZHANG Benren. Radioactivity of rocks in the Qinling Orogenic Belt and adjacent areas and the current thermal structure and state of the lithosphere[J]. Geochimica, 1993(3): 241–251. doi: 10.3321/j.issn:0379-1726.1993.03.005
    [33]
    赵平,汪集旸,汪缉安. 中国东南地区岩石生热率分布特征[J]. 岩石学报, 1995, 11(3): 292–305. doi: 10.3321/j.issn:1000-0569.1995.03.011

    ZHAO Ping, WANG Jiyang, WANG Ji’an, et al. Characteristics of heat production distribution in SE China[J]. Acta Petrologica Sinica, 1995, 11(3): 292–305. doi: 10.3321/j.issn:1000-0569.1995.03.011
    [34]
    WANG Andong, SUN Zhanxue, HU Baoqun, et al. Guangdong, a potential province for developing hot dry rock geothermal resource[J]. Applied Mechanics and Materials, 2014, 492: 583–585. doi: 10.4028/www.scientific.net/AMM.492.583
    [35]
    李林果,李百祥. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29–34. doi: 10.11720/wtyht.2017.1.05

    LI Linguo, LI Baixiang. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide Basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2017, 41(1): 29–34. doi: 10.11720/wtyht.2017.1.05
    [36]
    LEGARTH B, TISCHNER T, HUENGE S E. Stimulation experiments in sedimentary, low-enthalpy reservoirs for geothermal power generation[J]. Geothermics, 2003, 32(4/5/6): 487–495.
    [37]
    思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042

    SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042
    [38]
    RYBACH L, HOPKIRK R J. Shallow and deep borehole heat exchangers: achievements and prospects[C]// Process World Geothermal Congress. International Geothermal Association. Florence, Italy, 1995: 2133-2138.
    [39]
    马峰,王贵玲,魏帅超,等. 2018年地热勘探开发热点回眸[J]. 科技导报, 2019, 37(1): 134–143.

    MA Feng, WANG Guiling, WEI Shuaichao, et al. Summary of hot research topics in geothermal exploitation in 2018[J]. Science & Technology Review, 2019, 37(1): 134–143.
    [40]
    孔彦龙,陈超凡,邵亥冰,等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741–4752. doi: 10.6038/cjg20171216

    KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741–4752. doi: 10.6038/cjg20171216
    [41]
    赵振,陈惠娟,马建青,等. 青海省共和盆地恰卜恰地区地热资源评价与开发利用[J]. 青海环境, 2009, 19(2): 81–84. doi: 10.3969/j.issn.1007-2454.2009.02.010

    ZHAO Zhen, CHEN Huijuan, MA Jianqing, et al. On terrestrial heat resource assessment and its exploitation and utilization in Qiabuqia Area, Gonghe Basin, Qinghai[J]. Journal of Qinghai Environment, 2009, 19(2): 81–84. doi: 10.3969/j.issn.1007-2454.2009.02.010
    [42]
    陈梓慧,郑克棪,姜建军. 试论我国干热岩地热资源开发战略[J]. 水文地质工程地质, 2015, 42(3): 161–166.

    CHEN Zihui, ZHENG Keyan, JIANG Jianjun. Discussion on the development strategy of hot dry rock in China[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 161–166.
    [43]
    GHASSEMI A, ZHOU X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics, 2011, 40(1): 39–49. doi: 10.1016/j.geothermics.2010.12.001
    [44]
    FOULGER G. Geothermal exploration and reservoir monitoring using earthquakes and the passive seismic method[J]. Geothermics, 1982, 11(4): 259–268. doi: 10.1016/0375-6505(82)90032-3
    [45]
    ANJUAN B, PINAULT J L, ROSE P, et al. Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005[J]. Geothermics, 2006, 35(5): 622–653.
    [46]
    DEAN C, REIMUS P, OATES J, et al. Laboratory experiments to characterize cation- exchanging tracer behavior for fracture surface area estimation at Newberry Crater, OR[J]. Geothermics, 2015, 53: 213–224. doi: 10.1016/j.geothermics.2014.05.011
    [47]
    徐超,窦斌,田红,等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247–252.

    XU Chao, DOU Bin, TIAN Hong, et al. Process of carbon dioxide blasting to build EGS thermal reservoir[J]. Geological Science and Technology Information, 2019, 38(5): 247–252.
    [48]
    KIM K H, REE J H, KIM Y, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event.[J]. Science, 2018, 360: 1007–1009. doi: 10.1126/science.aat6081
    [49]
    CARDIFF M, LIM D D, PATTERSON J R, et al. Geothermal production and reduced seismicity: correlation and proposed mechanism[J]. Earth and Planetary Science Letters, 2018, 482: 470–477. doi: 10.1016/j.jpgl.2017.11.037
    [50]
    PAN Shuyuan, GAO Mengyao, SHAH K J, et al. Establishment of enhanced geothermal energy utilization plans: barriers and strate-gies[J]. Renewable Energy, 2018, 132: 19–32.
  • Cited by

    Periodical cited type(9)

    1. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
    2. 胡益涛. 基于红外光谱的二氧化碳现场检测技术应用. 工程技术研究. 2024(10): 103-105 .
    3. 杜焕福,王春伟,杨金莉,孙鑫,董佑桓,姚蒙蒙,都巾帅,陈存元. 页岩油录井评价技术发展历程及应用现状——以济阳坳陷沙河街组为例. 断块油气田. 2024(06): 1006-1013 .
    4. 杜焕福,孙鑫,王春伟,董佑桓,侯文辉,刘长亮. 东营凹陷页岩油双甜点录井解释评价方法研究. 矿产勘查. 2023(03): 480-490 .
    5. 陈朋飞. 石油行业录井技术发展中的问题和解决方法. 石化技术. 2023(07): 254-256 .
    6. 肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望. 石油钻探技术. 2023(04): 140-148 . 本站查看
    7. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    8. 钟安海. 含纹层陆相页岩力学参数的尺寸效应及其对压裂裂缝的影响. 油气地质与采收率. 2023(05): 22-30 .
    9. 丘宽,程浩然,黄瑞,田榆杰,谢官兴,陈飞飞. 数字岩屑综合管控云平台设计实现与应用. 电脑知识与技术. 2021(35): 121-122+136 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (2275) PDF downloads (146) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return