ZHENG Jian, GAO Hui, HUANG Lugang, DUAN Junya, DONG Duo. Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131
Citation: ZHENG Jian, GAO Hui, HUANG Lugang, DUAN Junya, DONG Duo. Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131

Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling

More Information
  • Received Date: January 07, 2019
  • Revised Date: October 14, 2019
  • Available Online: December 27, 2019
  • Under different borehole and formation conditions, there are some differences in the response of azimuthal gamma spectrum logging while drilling which can affect the subsequent logging interpretation and geosteering results. Therefore, it is necessary to study the influence of borehole and formation factors on the LWD azimuthal gamma spectrum, so as to eliminate the adverse effects and errors. First of all, the instrument structure of SAGR tool was compared and analyzed, and one of the structures was selected to be the study objective to establish the corresponding MCNP model. The response of LWD SAGR tool under different wellbore and formation conditions was simulated with the Monte Carlo method. The degree of influence for each of the following factors was obtained: mud density, KCl content, formation matrix and the dip angle, azimuth and thickness of inclined radioactive formation on the LWD SAGR Tool. Using the derived results it was possible to develop an appropriate, correction method for the influence of each of the non-stratigraphic factors. The results showed that the counting rate was positively correlated with KCl, dip angle and the formation thickness, and negatively correlated with mud density, the formation matrix density and azimuth. Only KCl rather than other factors can change the shape of energy spectrum. The study found that the counting rate after being corrected by the borehole influencing factors or the shale content, K, U, Th calculated by energy spectrum were closer to the true values, which could provide more accurate guidance for logging interpretation and geosteering.

  • [1]
    袁超.随钻方位伽马测井方法基础研究[D].青岛: 中国石油大学(华东), 2012.

    YUAN Chao. Fundamental study on LWD azimuthal gamma ray well logging[D]. Qingdao: China University of Petroleum (East China), 2012.
    [2]
    邵才瑞,曹先军,陈国兴,等. 随钻伽马测井快速正演算法及地质导向应用[J]. 地球物理学报, 2013, 56(11): 3932–3942. doi: 10.6038/cjg20131135

    SHAO Cairui, CAO Xianjun, CHEN Guoxing, et al. A fast forward algorithm for LWD gamma-ray response and its geosteering application[J]. Chinese Journal of Geophysics, 2013, 56(11): 3932–3942. doi: 10.6038/cjg20131135
    [3]
    向长生,王智锋,亢武臣. 随钻自然伽马地层边界模型分析[J]. 石油钻采工艺, 2013, 35(1): 112–114. doi: 10.3969/j.issn.1000-7393.2013.01.032

    XIANG Changsheng, WANG Zhifeng, KANG Wuchen. Modeling and analysis of formation boundaries based on LWD natural gamma[J]. Oil Drilling & Production Technology, 2013, 35(1): 112–114. doi: 10.3969/j.issn.1000-7393.2013.01.032
    [4]
    范宇翔,骆庆锋,李留,等. 伽马成像随钻测井仪钻铤布局设计可靠性分析[J]. 石化技术, 2015, 22(10): 213–214. doi: 10.3969/j.issn.1006-0235.2015.10.156

    FAN Yuxiang, LUO Qingfeng, LI Liu, et al. Analysis on design reliability of drill collar of gamma imaging logging while drilling instrument[J]. Petrochemical Industry Technology, 2015, 22(10): 213–214. doi: 10.3969/j.issn.1006-0235.2015.10.156
    [5]
    曲汉武, 吴文圣, 梁云祥, 等.随钻伽马成像的方位分辨率计算方法研究[A].北京: 2016中国地球科学联合学术年会, 2016-10.

    QU Hanwu, WU Wensheng, LIANG Yunxiang, et al. Research on azimuth resolution calculation method of gamma imaging while drilling[A]. Beijing: 2016 Annual Meeting of Chinese Geoscience Union, 2016-10.
    [6]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [7]
    MICKAEL M, PHELPS D, JONES D. Design, calibration, characterization, and field experience of new high-temperature, azimuthal, and spectral gamma ray logging-while-drilling tools[R]. SPE 77481, 2002.
    [8]
    MICKAEL M W, JONES D A, PHELPS D A, et al. Spectral gamma ray logging-while-drilling system: US7253401B2[P]. 2007-08-07[2019-01-07].
    [9]
    NYE R, TOMMASO D D. Well optimization using a LWD spectral azimuthal gamma ray tool in unconventional reservoirs[R]. OMC-2013-137, 2013.
    [10]
    MARSALA A F, KASPRZYKOWSKI P, KIMOUR F. Spectral gamma ray complements innovative real time advanced mud logging characterization while drilling[R]. SPE 168099, 2013.
    [11]
    MARANUK C, MICKAEL M, ZIMMERMANN P. Applications of a unique spectral azimuthal gamma ray tool to unconventional reservoirs[R]. SPWLA-2013-II, 2013.
    [12]
    DIAB M, COMBS J. Unconventional horizontal well placement challenges: LWD geosteering applications utilizing a unique spectral azimuthal gamma ray in real time[R]. SPE 169499, 2014.
    [13]
    XU Libai, HUISZOON C, WANG Jiaxin, et al. Spectral gamma-ray measurement while drilling[R]. SPWLA-2016-V57N4A4, 2016.
  • Related Articles

    [1]FENG Yingtao, MA Rui, CUI Ce, ZHANG Fuming, WEN Dayang, ZHAO Jun. Cementing Technologies for Ultra-Deepwater Development Wells in Block X of the South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(3): 90-97. DOI: 10.11911/syztjs.2025057
    [2]XING Xuesong, YUAN Junliang, LI Zhonghui, SUN Chong, ZHAO Yi. Determination of Formation Fracture Pressure under High Temperature and High Pressure in Deep Water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18-24. DOI: 10.11911/syztjs.2023052
    [3]WU Jiang, LI Yanjun, ZHANG Wandong, YANG Yuhao. Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
    [4]ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
    [5]HAN Cheng, HUANG Kaiwen, LUO Ming, LIU Xianyu, DEND Wenbiao. Plugging Technology for HTHP Wells in the Yingqiong Basin of the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 15-20. DOI: 10.11911/syztjs.2019081
    [6]LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026
    [7]LUO Ming, WU Jiang, CHEN Haodong, XIAO Ping. Ultra-High Temperature High Pressure Drilling Technology for Narrow Safety Density Window Strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8-12. DOI: 10.11911/syztjs.2019024
    [8]Sun Baojiang, Zhang Zhennan. Challenges and Countermeasures for the Drilling and Completion of Deepwater Wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1-7. DOI: 10.11911/syztjs.201504001
    [9]Gu Chunwei, Luo Ming, Xu Yilong, Wu Jiang. Application of Tieback outside Casing in Horizontal Wells Drilled on Semi-Submersible Platforms[J]. Petroleum Drilling Techniques, 2014, 42(1): 46-49. DOI: 10.3969/j.issn.1001-0890.2014.01.009
    [10]Liu Zhengli, Ye Jihua, Tian Ruirui, Yan De. Adaptability of Underwater Tamping for Deepwater Drilling Conductor Installation in South China Sea[J]. Petroleum Drilling Techniques, 2014, 42(1): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.01.008
  • Cited by

    Periodical cited type(8)

    1. 吴科睿,孙雨,闫百泉,杨佳奇,马志强,于利民,王鑫锐. 纹层状湖盆细粒沉积岩储集物性及油气富集特征研究进展. 沉积学报. 2025(01): 20-38 .
    2. 马天寿,王浩男,FADHEL A M,刘阳. 基于黏聚单元法的层状页岩巴西劈裂数值模拟. 中南大学学报(自然科学版). 2025(02): 702-715 .
    3. 赵迪斐,张家明,郭英海,顾东清,夏自强,陈振宏,汪生秀,焦伟伟,张跃磊,刘丹丹,谢小敏,张帏. 储层精细评价潜在关键关联指标:页岩沉积构造及其量化问题研究评述. 非常规油气. 2023(01): 11-20 .
    4. 葛勋,郭彤楼,黎茂稳,赵培荣,邓虎成,李王鹏,钟城. 深层页岩储层“工程甜点”评价与优选——以川南永川、丁山地区为例. 石油实验地质. 2023(02): 210-221 .
    5. 郭同政,张晋言,柴婧,包博婷,孙建孟. 基于测录井资料计算页岩含油饱和度与气油比的方法. 石油钻探技术. 2023(03): 126-136 . 本站查看
    6. 李贤胜,邱小雪,陈明江,李玮,刘向君,杨孛. 基于等效介质理论的页岩声波数值模拟方法研究. 特种油气藏. 2023(03): 63-72 .
    7. 张震,万秀梅,吴鹏程,李郑涛,文莉. 川南龙马溪组深层页岩井壁失稳原因分析及对策. 特种油气藏. 2022(01): 160-168 .
    8. 胡光. 层理性页岩力学参数对水力压裂裂缝形态的影响分析. 钻探工程. 2022(02): 97-103 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1376) PDF downloads (97) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return