ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
Citation: ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103

Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea

More Information
  • Received Date: January 22, 2019
  • Revised Date: September 29, 2019
  • Available Online: October 20, 2019
  • In order to address the problems of borehole caving, blockage and sticking while drilling the Paleogene shale formation in the Xijiang Oilfield of the South China Sea, technical research has been carried out on anti-sloughing drilling fluids. Through analyses of stratigraphic mineral composition, physicochemical properties and mechanical parameters, the mechanisms of wellbore instability in the Paleogene shale formation have been clarified, and have established the relationship chart between the drilling fluid density required for maintaining wellbore stability and rock cohesion, so as to determine the minimum rock cohesion index required to sustain wellbore stability. In order to improve the strength of surrounding shale immersed in drilling fluid, a new anti-sloughing drilling fluid formula was obtained through selection of proper inhibitor and plugging agent as well as their optimal dosages. The research showed that the intrusion of drilling fluid filtrate would lead to the reduction of shale strength, which is the main reason for the wellbore instability of Paleogene shale formation in this oilfield; After immersing for 10 days in the new anti-sloughing drilling fluid added by 2.0% polyammonium salt, 0.5% nano-silica and 3.0% calcium carbonate into KCl-polymer drilling fluid, the rock sample still has the cohesive force of 8.8 MPa, which satisfies the required rock cohesion of greater than 8.7 MPa in the expected period. According to the comprehensive analysis, the new anti-sloughing drilling fluid featured by good inhibition, plugging and anti-sloughing effect, it can solve the problems encountered during Paleogene shale drilling in the Xijiang Oilfield of the South China Sea, and effectively control the borehole enlargement rate.

  • [1]
    傅成玉, 罗汉.当代中国海洋石油工业[M].北京: 当代中国出版社, 2008: 5–30.

    FU Chengyu, LUO Han. Marine oil industry in contemporary China[M]. Beijing: Contemporary China Publishing House, 2008: 5–30.
    [2]
    李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气(地质), 1993, 7(6): 11–17.

    LI Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1993, 7(6): 11–17.
    [3]
    茹克. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 1988, 9(1): 22–31. doi: 10.11743/ogg19880103

    RU Ke. The development of superimposed basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 1988, 9(1): 22–31. doi: 10.11743/ogg19880103
    [4]
    黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 15–21, 25.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21, 25.
    [5]
    卢运虎, 金衍, 陈勉, 等. 高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2668–2679.

    LU Yunhu, JIN Yan, CHEN Mian, et al. Experimental study on strength of sandstone with different crack angle and different filling method under high-temperature and high-pressure coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 2668–2679.
    [6]
    张健, 卢运虎. 超深井筒温度分布及其对围岩力学性质的影响研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2831–2839.

    ZHANG Jian, LU Yunhu. Study on temperature distribution of ultra-deep wellbore and its effect on mechanical properties of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 2831–2839.
    [7]
    CHENEVERT M E. Shale alteration by water adsorption[J]. Journal of Petroleum Technology, 1970, 22(9): 1141–1148. doi: 10.2118/2401-PA
    [8]
    BRADLEY W B. Failure of inclined boreholes[J]. Journal of Energy Resources Technology, 1979, 101(4): 232–239. doi: 10.1115/1.3446925
    [9]
    CROOK A J L, YU J G, WILLSON S M. Development of an orthotropic 3D elastoplastic material model for shale[R]. SPE 78238, 2002.
    [10]
    LU Y H, CHEN M, JIN Y, et al. A mechanical model of borehole stability for weak plane formation under porous flow[J]. Petroleum Science and Technology, 2012, 30(15): 1629–1638. doi: 10.1080/10916466.2010.514583
    [11]
    石秉忠,解超,李胜,等. 杭锦旗区块锦58井区钻井液技术实践与认识[J]. 石油钻探技术, 2017, 45(6): 37–41. doi: 10.11911/syztjs.201706007

    SHI Bingzhong, XIE Chao, LI Sheng, et al. Development and application of drilling fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37–41. doi: 10.11911/syztjs.201706007
    [12]
    陈明, 黄志远, 马庆涛, 等. 马深1井钻井工程设计与施工[J]. 石油钻探技术, 2017, 45(4): 15–20. doi: 10.11911/syztjs.201704003

    CHEN Ming, HUANG Zhiyuan, MA Qingtao, et al. Design and drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15–20. doi: 10.11911/syztjs.201704003
    [13]
    邱梦觉. 海洋防塌钻井液体系适用性分析与应用比较[J]. 工程技术, 2016(6): 158. doi: 10.3969/j.issn.1671-3818.2016.06.137

    QIU Mengjue. Applicability analysis and application comparison of marine anti sloughing drilling fluid system[J]. Engineering Technology, 2016(6): 158. doi: 10.3969/j.issn.1671-3818.2016.06.137
    [14]
    卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
    [15]
    刘向君,罗平亚. 泥岩地层井壁稳定性研究[J]. 天然气工业, 1997, 17(1): 45–48.

    LIU Xiangjun, LUO Pingya. Study on wellbore stability in mudstone formation[J]. Natural Gas Industry, 1997, 17(1): 45–48.
    [16]
    马成云,宋碧涛,徐同台,等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液, 2017, 34(1): 1–8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 1–8. doi: 10.3969/j.issn.1001-5620.2017.01.001
    [17]
    孔勇,金军斌,林永学,等. 封堵防塌钻井液处理剂研究进展[J]. 油田化学, 2017, 34(3): 556–560.

    KONG Yong, JIN Junbin, LIN Yongxue, et al. Research advances of plugging anti-sloughing drilling fluid additives[J]. Oilfield Chemistry, 2017, 34(3): 556–560.
    [18]
    张建斌,贾俊,刘兆利. 长庆气田碳质泥岩防塌钻井液技术[J]. 钻井液与完井液, 2018, 35(3): 38–73.

    ZHANG Jianbin, JIA Jun, LIU Zhaoli. Drilling fluid technology for preventing collapse of carbargilite formation in Changqing gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 38–73.
    [19]
    邱正松, 张世锋, 黄维安, 等. 新型铝基防塌剂的研制及防塌作用机理[J]. 石油学报, 2014, 35(4): 754–758. doi: 10.7623/syxb201404018

    QIU Zhengsong, ZHANG Shifeng, HUANG Weian, et al. A novel aluminum-based shale/mudstone stabilizer and analysis of its mechanism for wellbore stability[J]. Acta Petrolei Sinica, 2014, 35(4): 754–758. doi: 10.7623/syxb201404018
    [20]
    张金龙. 胜利海区深部地层防塌钻井液技术[J]. 钻井液与完井液, 2013, 30(5): 40–42. doi: 10.3969/j.issn.1001-5620.2013.05.011

    ZHANG Jinlong. Anti-sloughing drilling fluid technology of deep formation in offshore of Shengli Oilfield[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 40–42. doi: 10.3969/j.issn.1001-5620.2013.05.011
  • Cited by

    Periodical cited type(9)

    1. 付俊芃,孙歧峰,陈沛沛,王亚宁. 融合IndRNN和PSO的随钻测井数据反演方法. 计算机系统应用. 2024(02): 33-42 .
    2. 孙歧峰,倪虹升,岳喜洲,张鹏云,宫法明. 基于深度残差网络的随钻方位电磁波电阻率测井反演方法. 石油钻探技术. 2024(05): 97-104 . 本站查看
    3. 康正明,秦浩杰,张意,李新,倪卫宁,李丰波. 基于LSTM神经网络的随钻方位电磁波测井数据反演. 石油钻探技术. 2023(02): 116-124 . 本站查看
    4. 郭同政. 钻铤对随钻电磁波测井电压信号影响分析. 测井技术. 2023(02): 199-203 .
    5. 吴世伟,刘得军,赵阳,王旭,冯雪,李洋. 层状介质水力裂缝电磁响应的有限元正演模拟. 石油钻探技术. 2022(02): 132-138 . 本站查看
    6. 翟金海,李国玉. 随钻方位电磁波电阻率测井仪信号精度分析. 今日制造与升级. 2022(02): 44-45+34 .
    7. 杨书博,乔文孝,赵琪琪,倪卫宁,吴金平. 随钻前视声波测井钻头前方声场特征研究. 石油钻探技术. 2021(02): 113-120 . 本站查看
    8. 林昕,苑仁国,秦磊,刘素周,苏朝博,卢中原,于忠涛,谭伟雄. 地质导向钻井前探技术现状及进展. 特种油气藏. 2021(02): 1-10 .
    9. 岳喜洲,马明学,李国玉,刘小刚,刘天淋,谢涛. 随钻方位电磁波电阻率测井技术与地质导向应用. 测井技术. 2021(02): 122-127 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1507) PDF downloads (101) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return