JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086
Citation: JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086

Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression

More Information
  • Received Date: April 04, 2021
  • Revised Date: June 17, 2021
  • Available Online: June 28, 2021
  • Argillaceous limestone facies core samples were drilled from Well Fanye X to reveal the brittleness anisotropy law of shale from the upper Chun submember of the fourth member of Shahejie Formation in the Northern Boxing Subsag of the Jiyang Depression. With the laboratory measured stress–strain curves for rocks as the calibration criterion, a three-dimensional numerical simulation was adopted to calculate and analyze the Poisson’s ratio, Young’s modulus and strength parameters of the cores. Four typical methods were employed to calculate the brittleness index of all cores. Research demonstrates that as the confining pressure increases, the degree of anisotropy of mechanical parameters declines, and the anisotropy of elastic parameters is more sensitive to the variation in confining pressure than that of strength parameters. Therefore, it is recommended to evaluate the anisotropy of core mechanics with elastic parameters. The brittleness index calculation method based on the principle of conservation of energy can objectively evaluate the shale core brittleness. The brittleness index decreases significantly as the confining pressure grows, and it first drops and then rises as the bedding dip increases. In other words, the brittleness index in the direction close to the angle of internal friction is the lowest, while it is relatively higher in the 0° and 90° coring directions. The research results can provide a theoretical basis for evaluating fracturing feasibility in shale oil reservoirs and selecting wells and layers in the Jiyang Depression.
  • [1]
    邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景 (二)[J]. 石油勘探与开发,2016,43(2):166–178. doi: 10.11698/PED.2016.02.02

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166–178. doi: 10.11698/PED.2016.02.02
    [2]
    JOHNSTON J E, CHRISTENSEN N I. Seismic anisotropy of shales[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 5991–6003. doi: 10.1029/95JB00031
    [3]
    JAEGER J C. Shear failure of anisotropic rocks[J]. Geological Magazine, 1960, 97(1): 65–72. doi: 10.1017/S0016756800061100
    [4]
    NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. doi: 10.1016/S1365-1609(97)80029-9
    [5]
    KUILA U, DEWHURST D N, SIGGINS A F, et al. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 2011, 503(1/2): 34–44.
    [6]
    陈天宇,冯夏庭,张希巍,等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报,2014,33(9):1772–1779.

    CHEN Tianyu, FENG Xiating, ZHANG Xiwei, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772–1779.
    [7]
    衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3):609–616.

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609–616.
    [8]
    王跃鹏,刘向君,梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏,2019,31(5):149–160.

    WANG Yuepeng, LIU Xiangjun, LIANG Lixi. Anisotropy and energy evolution characteristics of Zhangjiatan continental shale of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(5): 149–160.
    [9]
    洪国斌,陈勉,卢运虎,等. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术,2018,46(3):78–85.

    HONG Guobin, CHEN Mian, LU Yunhu, et al. Study on the anisotropy characteristics of deep shale in the Southern Sichuan Basin and their impacts on fracturing pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78–85.
    [10]
    宁凡,邹妞妞,张大权,等. 黔北地区下寒武统牛蹄塘组页岩特征研究[J]. 特种油气藏,2020,27(1):62–67, 135. doi: 10.3969/j.issn.1006-6535.2020.01.009

    NING Fan, ZOU Niuniu, ZHANG Daquan, et al. Shale characterization of the Lower Cambrian Niutitang Formation in Northern Guizhou[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 62–67, 135. doi: 10.3969/j.issn.1006-6535.2020.01.009
    [11]
    范宇,王佳珺,刘厚彬,等. 复杂载荷下深层脆性页岩力学性能及破坏规律实验研究[J]. 特种油气藏,2020,27(4):143–148. doi: 10.3969/j.issn.1006-6535.2020.04.022

    FAN Yu, WANG Jiajun, LIU Houbin, et al. Test and analysis of mechanical properties and failure patterns for the deep brittle shale under complex load[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 143–148. doi: 10.3969/j.issn.1006-6535.2020.04.022
    [12]
    HOLT R M, FJÆR E, STENEBRÅTEN J F, et al. Brittleness of shales: relevance to borehole collapse and hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2015, 131: 200–209. doi: 10.1016/j.petrol.2015.04.006
    [13]
    RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
    [14]
    THOMSEN L. On the use of isotropic parameters to understand anisotropic shale behavior[M]//SCHUELKE J. SEG Technical Program Expanded Abstracts 2013. Tulsa: Society of Exploration Geophysicists, 2013: 320-324.
    [15]
    艾池,仇德智,张军,等. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田,2017,24(5):647–651.

    AI Chi, QIU Dezhi, ZHANG Jun, et al. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 647–651.
    [16]
    夏宏泉,梁景瑞,文晓峰. 基于CQ指标的长庆油田长6—长8段致密油储层划分标准研究[J]. 石油钻探技术,2020,48(3):114–119. doi: 10.11911/syztjs.2020064

    XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The standard division of tight oil reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114–119. doi: 10.11911/syztjs.2020064
    [17]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [18]
    张伯虎, 马浩斌, 田小朋, 等.层状页岩力学参数的各向异性研究[J].地下空间与工程学报, 2020, 16(增刊2): 634–638.

    ZHANG Bohu, MA Haobin, TIAN Xiaopeng, et al. Deep layered shale mechanical parameters anisotropy study[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(supplement 2): 634–638.
    [19]
    王乔,李虎,刘廷,等. 页岩脆性的表征方法及主控因素[J]. 断块油气田,2020,27(4):458–463.

    WANG Qiao, LI Hu, LIU Ting, et al. Characterization method and main controlling factors of shale brittleness[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 458–463.
    [20]
    赖富强,冷寒冰,龚大建,等. 综合矿物组分和弹性力学参数的页岩脆性评价方法[J]. 断块油气田,2019,26(2):168–171, 186.

    LAI Fuqiang, LENG Hanbing, GONG Dajian, et al. Evaluation of shale brittleness based on mineral compositions and elastic mechanics parameters[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 168–171, 186.
    [21]
    LI L C, TANG C A, Li G, et al. Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique[J]. Rock Mechanics and Rock Engineering, 2012, 45: 801–818.
    [22]
    LI Lianchong, ZHAI Mingyang, ZHANG Liaoyuan, et al. Brittleness evaluation of glutenite based on energy balance and damage evolution[J]. Energies, 2019, 12(18): 3421. doi: 10.3390/en12183421
    [23]
    RAHIMZADEH KIVI I, AMERI M, MOLLADAVOODI H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 2018, 167: 1–19. doi: 10.1016/j.petrol.2018.03.061
    [24]
    何柏,谢凌志,李凤霞,等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学(物理学 力学 天文学),2017,47(11):103–114.

    HE Bo, XIE Lingzhi, LI Fengxia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi Shale[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 103–114.
  • Cited by

    Periodical cited type(8)

    1. 吴科睿,孙雨,闫百泉,杨佳奇,马志强,于利民,王鑫锐. 纹层状湖盆细粒沉积岩储集物性及油气富集特征研究进展. 沉积学报. 2025(01): 20-38 .
    2. 马天寿,王浩男,FADHEL A M,刘阳. 基于黏聚单元法的层状页岩巴西劈裂数值模拟. 中南大学学报(自然科学版). 2025(02): 702-715 .
    3. 赵迪斐,张家明,郭英海,顾东清,夏自强,陈振宏,汪生秀,焦伟伟,张跃磊,刘丹丹,谢小敏,张帏. 储层精细评价潜在关键关联指标:页岩沉积构造及其量化问题研究评述. 非常规油气. 2023(01): 11-20 .
    4. 葛勋,郭彤楼,黎茂稳,赵培荣,邓虎成,李王鹏,钟城. 深层页岩储层“工程甜点”评价与优选——以川南永川、丁山地区为例. 石油实验地质. 2023(02): 210-221 .
    5. 郭同政,张晋言,柴婧,包博婷,孙建孟. 基于测录井资料计算页岩含油饱和度与气油比的方法. 石油钻探技术. 2023(03): 126-136 . 本站查看
    6. 李贤胜,邱小雪,陈明江,李玮,刘向君,杨孛. 基于等效介质理论的页岩声波数值模拟方法研究. 特种油气藏. 2023(03): 63-72 .
    7. 张震,万秀梅,吴鹏程,李郑涛,文莉. 川南龙马溪组深层页岩井壁失稳原因分析及对策. 特种油气藏. 2022(01): 160-168 .
    8. 胡光. 层理性页岩力学参数对水力压裂裂缝形态的影响分析. 钻探工程. 2022(02): 97-103 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (462) PDF downloads (92) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return