Citation: | SUN Qifeng, NI Hongsheng, YUE Xizhou, et al. Inversion of azimuthal electromagnetic wave resistivity LWD based on deep residual network [J]. Petroleum Drilling Techniques, 2024, 52(5):97−104. DOI: 10.11911/syztjs.2024089 |
Azimuthal electromagnetic wave resistivity logging while drilling(LWD) can provide abundant subsurface information and help to determine reservoir location and complete boundary detection. However, the common iterative inversion method based on physical equations has low computational efficiency and is limited in real-time geosteering. Therefore, an intelligent inversion method of azimuthal electromagnetic wave resistivity logging data based on a deep residual network (ResNet) was proposed. The method replaced the convolution and pooling layers in the residual block with fully connected layers and used a multi-head attention mechanism to understand the relevance of the input data, so as to solve the nonlinear regression problem. By evaluating the depth and width of the model and using a Bayesian optimization tuning algorithm to find the optimal hyperparameters of the electromagnetic wave resistivity inversion method, the performance of the inversion model was improved. The method showed good accuracy in model experiments, with an average accuracy of 98.5%. In the actual logging data, the average accuracy rate was 97.2%, and the single point inversion time was about 0.01 s. Intelligent inversion method of azimuthal electromagnetic wave resistivity logging data could quickly and accurately invert the azimuthal electromagnetic wave resistivity logging data.
[1] |
岳喜洲,马明学,李国玉,等. 随钻方位电磁波电阻率测井技术与地质导向应用[J]. 测井技术,2021,45(2):122–127.
YUE Xizhou, MA Mingxue, LI Guoyu, et al. Azimuthal electromagnetic wave resistivity logging while drilling technology and its application in geo-steering[J]. Well Logging Technology, 2021, 45(2): 122–127.
|
[2] |
唐海全,肖红兵,李翠,等. 基于随钻测井的地层界面识别方法[J]. 天然气勘探与开发,2016,39(4):8–12.
TANG Haiquan, XIAO Hongbing, LI Cui, et al. Methods to identify formation boundary based on logging-while-drilling[J]. Natural Gas Exploration and Development, 2016, 39(4): 8–12.
|
[3] |
杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126.
YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-Newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126.
|
[4] |
刘强,姚长利,郑元满. 基于阻尼最小二乘法的位场欧拉反演方法[J]. 地球物理学报,2019,62(10):3710–3722.
LIU Qiang, YAO Changli, ZHENG Yuanman. Euler deconvolution of potential field based on damped least square method[J]. Chinese Journal of Geophysics, 2019, 62(10): 3710–3722.
|
[5] |
张帅,何应付,伦增珉,等. 李-凯斯勒方程的牛顿–二分求解法[J]. 科学技术与工程,2022,22(18):7859–7865.
ZHANG Shuai, HE Yingfu, LUN Zengmin, et al. Hybrid Newton-bisection algorithm for solving Lee-Kesler equation[J]. Science Technology and Engineering, 2022, 22(18): 7859–7865.
|
[6] |
董长军,赵鹤鸣. 基于梯度下降法和自适应参数相结合的姿态解算方法[J]. 传感技术学报,2020,33(7):997–1002.
DONG Changjun, ZHAO Heming. Attitude estimation based on gradient descent algorithmand adaptive parameters[J]. Chinese Journal of Sensors and Actuators, 2020, 33(7): 997–1002.
|
[7] |
唐文秀,林虎,薛梓,等. 基于C编程实现高斯牛顿法求解激光跟踪干涉仪基站空间坐标[J]. 计量学报,2020,41(6):656–661.
TANG Wenxiu, LIN Hu, XUE Zi, et al. Calculation of base station coordinate for tracking interferometer with Gauss-Newton algorithm realized by C#[J]. Acta Metrologica Sinica, 2020, 41(6): 656–661.
|
[8] |
朱高阳. 基于深度学习的层状储层中随钻电磁波测井资料的正反演研究[D]. 济南:山东大学,2020.
ZHU Gaoyang. Research on modeling and inversion of the LWD data in layered formations based on deep learning[D]. Jinan: Shandong University, 2020.
|
[9] |
郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用,2019,55(12):20–36.
ZHENG Yuanpan, LI Guangyang, LI Ye. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20–36.
|
[10] |
桂冠,王禹,黄浩. 基于深度学习的物理层无线通信技术:机遇与挑战[J]. 通信学报,2019,40(2):19–23.
GUI Guan, WANG Yu, HUANG Hao. Deep learning based physical layer wireless communication techniques: opportunities and challenges[J]. Journal on Communications, 2019, 40(2): 19–23.
|
[11] |
孙歧峰,李娜,段友祥,等. 基于长短期记忆神经网络的随钻地层倾角解释方法[J]. 石油勘探与开发,2021,48(4):843–850.
SUN Qifeng, LI Na, DUAN Youxiang, et al. Logging-while-drilling formation dip interpretation based on long short-term memory[J]. Petroleum Exploration and Development, 2021, 48(4): 843–850.
|
[12] |
ZHU Gaoyang, GAO Muzhi, KONG Fanmin, et al. A fast inversion of induction logging data in anisotropic formation based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2050–2054. doi: 10.1109/LGRS.2019.2961374
|
[13] |
SHAHRIARI M, HAZRA A, PARDO D. A deep learning approach to design a borehole instrument for geosteering[J]. Geophysics, 2022, 87(2): D83–D90. doi: 10.1190/geo2021-0240.1
|
[14] |
FAN Jianbao, ZHANG Wenxiu, CHEN Wenxuan, et al. Inversion based on deep learning of logging-while-drilling directional resistivity measurements[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part D): 109677.
|
[15] |
TARG S, ALMEIDA D, LYMAN K. Resnet in Resnet: generalizing residual architectures[DB/OL]. (2016-03-25)[2023-04-18]. https://arxiv.org/abs/1603.08029.
|
[16] |
朱张莉,饶元,吴渊,等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报,2019,33(6):1–11.
ZHU Zhangli, RAO Yuan, WU Yuan, et al. Research progress of attention mechanism in deep learning[J]. Journal of Chinese Information Processing, 2019, 33(6): 1–11.
|
[17] |
崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学报,2018,29(10):3068–3090.
CUI Jiaxu, YANG Bo. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068–3090.
|
[18] |
马明学,岳喜洲,李国玉. 基于倾斜发射–倾斜接收仪器结构进行随钻地质导向与地层各向异性评价[J]. 中国石油大学学报(自然科学版),2018,42(4):50–58.
MA Mingxue, YUE Xizhou, LI Guoyu. Geosteering and anisotropic resistivity evaluation by using a tilted transmitter-tilted receiver tool structure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(4): 50–58.
|
[19] |
岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920.
YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920.
|
[20] |
安鹏,曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展,2018,33(3):1029–1034.
AN Peng, CAO Danping. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3): 1029–1034.
|
[21] |
马国庆,王泽坤,李丽丽. 基于自注意力机制深度学习的重磁数据网格化和滤波方法[J]. 石油地球物理勘探,2022,57(1):34–42.
MA Guoqing, WANG Zekun, LI Lili. Gridding and filtering method of gravity and magnetic data based on self-attention deep learning[J]. Oil Geophysical Prospecting, 2022, 57(1): 34–42.
|
[22] |
胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报,2019,14(1):1–19.
HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. Journal of Intelligent Systems, 2019, 14(1): 1–19.
|
[23] |
严春满,王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索,2021,15(1):27–46.
YAN Chunman, WANG Cheng. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(1): 27–46.
|
[24] |
朱汇龙,刘晓燕,刘瑶. 基于贝叶斯新型深度学习超参数优化的研究[J]. 数据通信,2019(2):35–38.
ZHU Huilong, LIU Xiaoyan, LIU Yao. Research on hyper-parameter optimization based on Bayesian deep learning[J]. Data Communications, 2019(2): 35–38.
|
[25] |
梁立锋,刘秀娟,张宏兵,等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探,2021,45(1):133–139.
LIANG Lifeng, LIU Xiujuan, ZHANG Hongbing, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133–139.
|
[26] |
吴浩楠. 超参数自动调优算法研究[D]. 哈尔滨:哈尔滨工业大学,2020.
WU Haonan. Research on automatic hyper-parameter tuning algorithm[D]. Harbin: Harbin Institute of Technology, 2020.
|
1. |
郝少伟,张径硕,陈瑞杰,竟亚飞. 余吾矿不同软/硬煤+围岩下压裂参数优化模拟. 煤矿安全. 2025(01): 34-42 .
![]() | |
2. |
陈玲,孙伟,周亚彤. 常压页岩气藏储量起算标准研究——以渝东南地区武隆区块五峰组—龙马溪组页岩气藏为例. 油气藏评价与开发. 2025(01): 49-55 .
![]() | |
3. |
王科,卢双舫,娄毅,李楠,李海涛,叶铠睿,张砚,李松雷. 压裂液渗吸与富气页岩气井典型生产规律关系剖析. 特种油气藏. 2024(03): 158-166 .
![]() | |
4. |
周博成. 南川页岩气井无限级滑套开启异常分析与处理实践. 石油地质与工程. 2024(05): 94-99 .
![]() | |
5. |
林孝礼,周向东,支林,邓翔元. 丁山区块常压页岩气压裂认识及实践. 天然气技术与经济. 2024(06): 7-14 .
![]() | |
6. |
刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .
![]() | |
7. |
王昊,唐雯,张鹏鹏,王华,陶永富,乔梁,贾焱,刘乘宙. 考虑净现值的页岩气藏压裂水平井参数优化研究. 断块油气田. 2023(02): 205-212 .
![]() | |
8. |
孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
![]() | |
9. |
王智鑫. 高性能水基钻井液体系设计与评价. 当代化工. 2023(09): 2153-2157 .
![]() | |
10. |
张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 .
![]() | |
11. |
姚红生,房启龙,袁明进,张壮. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向. 石油实验地质. 2023(06): 1132-1142 .
![]() |