Citation: | KANG Wuchen, YANG Shubo, ZHAO Qiqi, et al. A pulse signal processing method for drilling fluid based on optimal variational mode decomposition and cross-correlation [J]. Petroleum Drilling Techniques,2023, 51(3):144-151. DOI: 10.11911/syztjs.2023068 |
With oil & gas exploration and development going ever deeper, drilling technologies are gradually advancing towards deep and ultra-deep wells and slim holes, which puts forward high requirements for the processing of pulse signals of drilling fluid. By analyzing the principle of pulse position modulation coding, a pulse signal processing method was proposed for drilling fluid based on optimal variational mode decomposition (VMD) and cross-correlation. And the feasibility of the method was later verified by using pulse signals of drilling fluid collected from a shale oil well in the northern Jiangsu region. Through the optimal VMD algorithm, the useful signals were effectively extracted under low signal-to-noise ratio conditions; based on the synchronization correlator, the de-noised signals were cross-correlated to reliably calculate the starting position of the data frame; according to the data block correlator, the waveforms in the data block were cross-correlated to accurately acquire the code values. Compared with the traditional pulse signal processing methods for drilling fluid, the proposed method exhibits characteristics of high reliability and low bit error rate, and it can well satisfy the needs of pulse signal processing for drilling fluid in complex wellbore environments.
[1] |
高文凯,窦修荣,闫国兴. 随钻声波传输的信道特性研究[J]. 石油钻探技术,2013,41(4):27–31.
GAO Wenkai, DOU Xiurong, YAN Guoxing. Channel characteristics of acoustic telemetry while drilling[J]. Petroleum Drilling Techniques, 2013, 41(4): 27–31.
|
[2] |
YAN Zhidan, XU Wenyi, AI Chunwei, et al. Parametric study on pump noise processing method of continuous wave mud pulse signal based on dual-sensor[J]. Journal of Petroleum Science and Engineering, 2019, 178: 987–998. doi: 10.1016/j.petrol.2019.04.018
|
[3] |
QU Fengzhong, JIANG Qin, JIN Guozheng, et al. Mud pulse signal demodulation based on support vector machines and particle swarm optimization[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107432. doi: 10.1016/j.petrol.2020.107432
|
[4] |
梁耀. 旋转导向系统信号传输与闭环控制关键技术研究[D]. 北京: 中国石油大学(北京), 2020.
LIANG Yao. Research on the key technology of RSS’s signal transmission and closed loop control[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[5] |
梁耀,李传伟,李安宗,等. 高速泥浆脉冲遥传系统研制及应用[J]. 西安石油大学学报(自然科学版),2019,34(6):93–97.
LIANG Yao, LI Chuanwei, LI Anzong, et al. Development and application of high-speed mud pulse signal transmission system[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(6): 93–97.
|
[6] |
孙欢,朱明明,张勤,等. 长庆油田致密气水平井超长水平段安全钻井完井技术[J]. 石油钻探技术,2022,50(5):14–19. doi: 10.11911/syztjs.2022095
SUN Huan, ZHU Mingming, ZHANG Qin, et al. Safe drilling and completion technologies for ultra-long horizontal section of tight gas horizontal wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14–19. doi: 10.11911/syztjs.2022095
|
[7] |
李金蔓,孙金声,霍宏博,等. 物联网技术在海洋钻完井中的应用[J]. 石油钻采工艺,2022,44(2):233–240. doi: 10.13639/j.odpt.2022.02.015
LI Jinman, SUN Jinsheng, HUO Hongbo, et al. Applications of internet of things in offshore well drilling/completion[J]. Oil Drilling & Production Technology, 2022, 44(2): 233–240. doi: 10.13639/j.odpt.2022.02.015
|
[8] |
张浩,毕雪亮,刘维凯,等. EM-MWD信号在钻柱中传输的影响因素研究[J]. 石油钻探技术,2021,49(6):125–130.
ZHANG Hao, BI Xueliang, LIU Weikai, et al. Investigation of the factors that influence EM-MWD signal transmission in drill strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125–130.
|
[9] |
李艳军. 随钻测量系统泥浆脉冲解码及地面通信单元的设计与实现[D]. 北京: 北京航空航天大学, 2013.
LI Yanjun. Design and implementation of the mud pulse decoding and the ground communication unit on the MWD system[D]. Beijing: Beihang University, 2013.
|
[10] |
段友祥,张洋弘,李洪强,等. 基于可信度分析的钻井液脉冲信号识别方法[J]. 石油钻探技术,2018,46(3):120–126.
DUAN Youxiang, ZHANG Yanghong, LI Hongqiang, et al. A new drilling fluid pulse signal identification method based on credibility analysis[J]. Petroleum Drilling Techniques, 2018, 46(3): 120–126.
|
[11] |
胡永建,黄衍福,李显义. 钻井液脉冲信号自动去噪与识别算法[J]. 石油勘探与开发,2019,46(2):378–384.
HU Yongjian, HUANG Yanfu, LI Xianyi. Automatic de-noising and recognition algorithm for drilling fluid pulse signal[J]. Petroleum Exploration and Development, 2019, 46(2): 378–384.
|
[12] |
乔宗超,唐露新,刘海. 自适应滤波算法消除泥浆脉冲信号中的泵冲噪声[J]. 仪器仪表学报,2016,37(7):1477–1484.
QIAO Zongchao, TANG Luxin, LIU Hai. Adaptive filtering algorithm for cancelling the pump noise in the mud pulse signal[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1477–1484.
|
[13] |
贾梦之,耿艳峰,闫宏亮,等. 高速泥浆脉冲数据传输技术综述[J]. 仪器仪表学报,2018,39(12):160–170.
JIA Mengzhi, GENG Yanfeng, YAN Hongliang, et al. Review of high-speed mud pulse telemetry technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 160–170.
|
[14] |
张祝军. 摆动式连续波泥浆脉冲通信系统中的信道特性与消噪技术研究[D]. 杭州: 浙江大学, 2018.
ZHANG Zhujun. Signal processing and noise cancellation techniques for oscillatory continuous wave mud pulse telemetry[D]. Hangzhou: Zhejiang University, 2018.
|
[15] |
郭光明. 随钻通信信道估计及信道质量评估方法研究与实现[D]. 成都: 电子科技大学, 2022.
GUO Guangming. Research and implementation of channel estimation and channel quality assessment method for communication while drilling[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
[16] |
冉茂霞,黄沁元,刘鑫,等. 基于优化变分模态分解的磁瓦内部缺陷检测[J]. 浙江大学学报(工学版),2020,54(12):2158–2168.
RAN Maoxia, HUANG Qinyuan, LIU Xin, et al. Internal defect detection of arc magnets based on optimized variational mode decomposition[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(12): 2158–2168.
|
[17] |
邓红卫,申一鹏. 基于变分模态分解和粒子群算法的微震信号降噪方法[J]. 矿冶工程,2021,41(1):7–10. doi: 10.3969/j.issn.0253-6099.2021.01.002
DENG Hongwei, SHEN Yipeng. Noise reduction method for microseismic signal based on variational mode decomposition and particle swarm algorithm[J]. Mining and Metallurgical Engineering, 2021, 41(1): 7–10. doi: 10.3969/j.issn.0253-6099.2021.01.002
|
[18] |
施晶,朱明,沈华,等. 基于VMD和小波阈值的水听器信号去噪方法[J]. 传感技术学报,2020,33(7):1003–1012. doi: 10.3969/j.issn.1004-1699.2020.07.013
SHI Jing, ZHU Ming, SHEN Hua, et al. Denoising method of hydrophone signal based on VMD and wavelet threshold[J]. Chinese Journal of Sensors and Actuators, 2020, 33(7): 1003–1012. doi: 10.3969/j.issn.1004-1699.2020.07.013
|
[19] |
李安宗,李传伟,梁耀,等. 密勒码在随钻测井高速泥浆脉冲遥测系统中的应用[J]. 测井技术,2015,39(1):78–82. doi: 10.16489/j.issn.1004-1338.2015.01.016
LI Anzong, LI Chuanwei, LIANG Yao, et al. Study on Miller code technology for high data rate mud pulser system in LWD[J]. Well Logging Technology, 2015, 39(1): 78–82. doi: 10.16489/j.issn.1004-1338.2015.01.016
|
[20] |
彭轶旋. 连续波泥浆脉冲器信号的滤波与解码技术研究[D]. 青岛: 中国石油大学(华东), 2018.
PENG Yixuan. Research on the filtering and decoding technology of continuous wave mud pulser signal[D]. Qingdao: China University of Petroleum(East China), 2018.
|
1. |
陈佳,郭玉祥,董丽娟,樊恒. 远探测随钻方位电磁波测井参数分析与优选. 石油管材与仪器. 2025(02): 67-76 .
![]() | |
2. |
夏国勇,彭仕轩,陆林超,欧成华,权昊森,倪根生,邱前程,马韶光. 水平井钻进中页岩小层结构元素录井智能实时识别. 断块油气田. 2025(03): 508-513 .
![]() | |
3. |
王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
![]() | |
4. |
秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 .
![]() | |
5. |
高泽林,王佳琦,张启子. 智能化测井解释软件平台的架构研究. 石油钻探技术. 2024(04): 128-134 .
![]() | |
6. |
吴泽兵,袁若飞,张文溪,刘家乐. 基于多目标遗传算法的PDC复合片交界结构优化设计. 石油钻探技术. 2024(04): 24-33 .
![]() | |
7. |
赵宁,申松宁,李宁,胡海涛,齐超,秦策. 基于物理驱动的超深随钻方位电磁波测井深度学习反演. 石油地球物理勘探. 2024(05): 1069-1079 .
![]() | |
8. |
盛茂,范龙昂,张帅,张彦军,李川,田守嶒. 数据–知识混合驱动的压裂球座坐封有效性智能诊断方法. 石油钻探技术. 2024(05): 76-81 .
![]() |