Citation: | WU Zebing, YUAN Ruofei, ZHANG Wenxi, et al. Optimization design of interface structure for PDC composite sheets based on multi-objective genetic algorithms [J]. Petroleum Drilling Techniques, 2024, 52(4):24-33. DOI: 10.11911/syztjs.2024068 |
A novel interface structure was proposed to enhance the bonding strength at the interface of polycrystalline diamond (PDC) composite sheets, thereby improving their overall impact resistance and stability. The finite element method was employed to compare the stress distribution within composite sheets designed with the proposed interface structure against those with a conventional interface structure under external stress conditions. The study accounted for the influence of the structural parameters of the proposed interface structure, employing an optimal filling space method for sampling. The least square method was used to develop a second-order response surface approximation model of the structural field. Using the interface structure parameters as design variables, the maximum values of equivalent stress, maximum shear stress, and maximum principal stress in the structural field were set as design objectives, and a multi-objective genetic algorithm was then applied to optimize the response surface appro-ximation model. The results demonstrate that, under identical simulation conditions, the proposed interface structure reduces the maximum equivalent stress by 50.7%, the maximum shear stress by 52%, and the maximum principal stress by 22.4% compared to the conventional interface structure. For the optimized PDC composite sheet under the same conditions, equivalent stress, maximum shear stress, and maximum principal stress are all reduced by more than 14%. The optimized PDC composite sheet exhibited improved rock-breaking stability, effectively avoid stress concentration, and enhance thermal stability. The findings provide a theoretical basis for the optimization design of PDC composite sheets and introduce a novel optimization method that can help reduce research and development costs.
[1] |
高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议[J]. 石油钻探技术,2024,52(2):1–11. doi: 10.11911/syztjs.2024024
GAO Deli, HUANG Wenjun. Research and development suggestions on theory and techniques in ultra-deep well engineering[J]. Petroleum Drilling Techniques, 2024, 52(2): 1–11. doi: 10.11911/syztjs.2024024
|
[2] |
高德利,黄文君. 深层、超深层定向钻井中若干基础研究进展与展望[J]. 天然气工业,2024,44(1):1–12.
GAO Deli, HUANG Wenjun. Basic research progress and prospect in deep and ultra-deep directional drilling[J]. Natural Gas Industry, 2024, 44(1): 1–12.
|
[3] |
王勇,汤勇,李士伦,等. 多级压裂水平井周期性注气吞吐提高页岩油气藏采收率:以北美Eagle Ford非常规油气藏为例[J]. 天然气工业,2023,43(1):153–161.
WANG Yong, TANG Yong, LI Shilun, et al. Cyclic gas injection huff-n-puff in multi-stage fracturing horizontal wells to improve recovery of shale oil and gas reservoirs: taking Eagle Ford shale in North America as an example[J]. Natural Gas Industry, 2023, 43(1): 153–161.
|
[4] |
高德利. 非常规油气井工程技术若干研究进展[J]. 天然气工业,2021,41(8):153–162. doi: 10.3787/j.issn.1000-0976.2021.08.014
GAO Deli. Some research advances in well engineering technology for unconventional hydrocarbon[J]. Natural Gas Industry, 2021, 41(8): 153–162. doi: 10.3787/j.issn.1000-0976.2021.08.014
|
[5] |
吴泽兵,袁若飞,张文溪,等. PDC混合布齿钻头破碎非均质花岗岩数值模拟[J]. 天然气工业,2024,44(5):105–117.
WU Zebing, YUAN Ruofei, ZHANG Wenxi, et al. Numerical simulation of breaking heterogeneous granite with PDC mixed-tooth bits[J]. Natural Gas Industry, 2024, 44(5): 105–117.
|
[6] |
刘伟吉,王燕飞,祝效华,等. 基于等效岩体表征方法的花岗岩切削破碎机理[J]. 应用基础与工程科学学报,2023,31(4):1043–1060.
LIU Weiji, WANG Yanfei, ZHU Xiaohua, et al. Rock cutting mechanism of heterogeneous granite using equivalent rock mass technology[J]. Journal of Basic Science and Engineering, 2023, 31(4): 1043–1060.
|
[7] |
WEI Jiusen, LIU Wei, GAO Deli. Effect of cutter shape on the resistance of PDC cutters against tip impacts[J]. SPE Journal, 2022, 27(5): 3035–3050. doi: 10.2118/209809-PA
|
[8] |
刘永升. 仿生PDC切削齿结构设计与破岩机理研究[D]. 成都:西南石油大学,2015.
LIU Yongsheng. Study on bionic PDC cutter structure design and rock breaking mechanism [D]. Chengdu: Southwest Petroleum University, 2015.
|
[9] |
LIU Weiji, MENG Xun, WENG Xiaosong, et al. Rock-breaking performance of specially-shaped PDC cutters from a new insight into the damage beneath cutting groove[J]. Geoenergy Science and Engineering, 2023, 231(part A): 212326.
|
[10] |
李琴,傅文韬,黄志强,等. 硬地层中新型PDC齿破岩机理及试验研究[J]. 工程设计学报,2019,26(6):635–644. doi: 10.3785/j.issn.1006-754X.2019.00.015
LI Qin, FU Wentao, HUANG Zhiqiang, et al. Rock breaking mechanism and experimental study of new PDC tooth in hard formation[J]. Chinese Journal of Engineering Design, 2019, 26(6): 635–644. doi: 10.3785/j.issn.1006-754X.2019.00.015
|
[11] |
孙荣军,谷拴成,石智军,等. 硬岩钻进用仿生PDC切削齿优化与破岩机理研究[J]. 煤炭科学技术,2018,46(5):143–148.
SUN Rongjun, GU Shuancheng, SHI Zhijun, et al. Study on optimized bionic PDC cutter applied to hard rock drilling and rock cutting mechanism[J]. Coal Science and Technology, 2018, 46(5): 143–148.
|
[12] |
刘维,高德利. PDC钻头研究现状与发展趋势[J]. 前瞻科技,2023,2(2):168–178.
LIU Wei, GAO Deli. Research status and development trends of polycrystalline diamond compact Bits[J]. Science and Technology Foresight, 2023, 2(2): 168–178.
|
[13] |
LIU Wei, GAO Deli. Microstructure and wear of Ni-WC hardfacing used for steel-body PDC bits[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105683. doi: 10.1016/j.ijrmhm.2021.105683
|
[14] |
吴泽兵,席凯凯,赵海超,等. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究[J]. 石油钻探技术,2022,50(2):71–77. doi: 10.11911/syztjs.2021114
WU Zebing, XI Kaikai, ZHAO Haichao, et al. Simulation study on temperature field and rock breaking characteristics of the bionic PDC cutter in rotating state[J]. Petroleum Drilling Techniques, 2022, 50(2): 71–77. doi: 10.11911/syztjs.2021114
|
[15] |
呼怀刚,黄洪春,汪海阁,等. 国内外PDC钻头新进展与发展趋势展望[J]. 石油机械,2024,52(2):1–10.
HU Huaigang, HUANG Hongchun, WANG Haige, et al. New progress and development trends of PDC bits in China and abroad[J]. China Petroleum Machinery, 2024, 52(2): 1–10.
|
[16] |
刘畅,杨迎新,姚建林,等. 新型非平面齿破岩规律研究[J]. 地下空间与工程学报,2023,19(2):428–436.
LIU Chang, YANG Yingxin, YAO Jianlin, et al. Research on rock breaking law of new non planar cutter[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 428–436.
|
[17] |
PENG Qi, ZHOU Yingcao, YU Jiaqing, et al. Study on rock breaking efficiency of special shaped cutters[J]. IOP Conference Series: Earth and Environmental Science, 2022, 983(1): 012089. doi: 10.1088/1755-1315/983/1/012089
|
[18] |
ZHENG Deyu, XIA Yufeng, TENG Haihao, et al. Application of genetic algorithm to enhance the predictive stability of BP-ANN constitutive model for GH4169 superalloy[J]. Journal of Central South University, 2024, 31(3): 693–708. doi: 10.1007/s11771-024-5591-x
|
[19] |
SHAO Fangyuan, LIU Wei, GAO Deli, et al. Development and verification of triple-ridge-shaped cutter for PDC bits[J]. SPE Journal, 2022, 27(6): 3849–3863. doi: 10.2118/210580-PA
|
[20] |
袁若飞,吴泽兵,张文溪. 可伸缩仿生聚晶金刚石复合片钻头[J]. 石油钻采工艺,2023,45(3):296–306.
YUAN Ruofei, WU Zebing, ZHANG Wenxi. Scalable biomimetic polycrystalline diamond compact bit[J]. Oil Drilling & Production Technology, 2023, 45(3): 296–306.
|
[21] |
张德荣,孔春岩,常十梨,等. 异形PDC加强齿结构优化设计及有限元分析[J]. 机械设计与研究,2014,30(5):80–83.
ZHANG Derong, KONG Chunyan, CHANG Shili, et al. The structure design of special-shaped PDC reinforced-cutter and its finite element method analysis[J]. Machine Design & Research, 2014, 30(5): 80–83.
|
[22] |
刘永旺,李坤,管志川,等. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计[J]. 石油钻探技术,2024,52(3):11–20. doi: 10.11911/syztjs.2024003
LIU Yongwang, LI Kun, GUAN Zhichuan, et al. Research on the method of improving ROP and designing drill bits to mitigate drillability of bottomhole rocks[J]. Petroleum Drilling Techniques, 2024, 52(3): 11–20. doi: 10.11911/syztjs.2024003
|
[23] |
WEI Jiusen, LIU Wei, GAO Deli. Modeling of PDC bit-rock interaction behaviors based on the analysis of dynamic rock-cutting process[J]. Geoenergy Science and Engineering, 2024, 239: 212955. doi: 10.1016/j.geoen.2024.212955
|
[24] |
XIONG Chao, HUANG Zhongwei, SHI Huaizhong, et al. Investigations on the stinger PDC cutter breaking granitoid under in-situ stress and hydrostatic pressure conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 164: 105312. doi: 10.1016/j.ijrmms.2022.105312
|
[25] |
高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34. doi: 10.11911/syztjs.2023022
GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34. doi: 10.11911/syztjs.2023022
|
[26] |
吴泽兵,谷亚冰,姜雯,等. 基于遗传优化算法的井底钻压智能预测模型[J]. 石油钻采工艺,2023,45(2):151–159.
WU Zebing, GU Yabing, JIANG Wen, et al. Intelligent prediction models of downhole weight on bit based on genetic optimization algorithm[J]. Oil Drilling & Production Technology, 2023, 45(2): 151–159.
|
[27] |
王娟,梅启亮,邹永玲,等. 基于多参数时间序列及粒子群优化算法的油藏产量动态建模预测方法[J]. 石油钻采工艺,2023,45(2):190–196.
WANG Juan, MEI Qiliang, ZOU Yongling, et al. Reservoir production performance prediction model based on multi-parameter time series and particle swarm optimization algorithm[J]. Oil Drilling & Production Technology, 2023, 45(2): 190–196.
|
[28] |
康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124. doi: 10.11911/syztjs.2023047
KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124. doi: 10.11911/syztjs.2023047
|
[29] |
樊永东,庞惠文,金衍,等. 基于成像测井的孔缝智能分割与识别[J]. 石油钻采工艺,2022,44(4):500–505.
FAN Yongdong, PANG Huiwen, JIN Yan, et al. Intelligent segmentation and recognition of pores and fractures based on imaging logging[J]. Oil Drilling & Production Technology, 2022, 44(4): 500–505.
|
[30] |
ZHANG Zengzeng, ZHAO Dajun, ZHAO Yan, et al. 3D numerical simulation study of rock breaking of the wavy PDC cutter and field verification[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108578. doi: 10.1016/j.petrol.2021.108578
|
[31] |
吴泽兵,袁若飞,张文溪,等. 锯形PDC齿破岩与温度特性数值模拟研究[J]. 石油机械,2024,52(1):29–37.
WU Zebing, YUAN Ruofei, ZHANG Wenxi, et al. Numerical simulation on rock-breaking and temperature characteristics of sawtooth PDC cutter[J]. China Petroleum Machinery, 2024, 52(1): 29–37.
|
[32] |
XI Yan, WANG Wei, FAN Lifeng, et al. Experimental and numerical investigations on rock-breaking mechanism of rotary percussion drilling with a single PDC cutter[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part B): 109227.
|
[33] |
WANG Yong, NI Hongjian, WANG Ruihe, et al. Numerical simulation research on cutting rock with a PDC cutter assisted by an impact force[J]. Advances in Civil Engineering, 2022(1): 1.1–1.9.
|
[34] |
刘维,高德利. 大齿快切PDC钻头提速研究与现场试验[J]. 天然气工业,2022,42(9):102–110.
LIU Wei, GAO Deli. Research and field test of large-tooth and rapid-cutting PDC bit for ROP enhancement[J]. Natural Gas Industry, 2022, 42(9): 102–110.
|
[35] |
杨迎新, 牛世伟, 陈炼, 等. 具有独立缓冲结构的PDC—牙轮复合钻头研制[J]. 天然气工业,2024,44(5):96–104.
YANG Yingxin, NIU Shiwei, CHEN Lian, et al. A PDC-roller hybrid bit with an independent buffer structure[J]. Natural Gas Industry, 2024, 44(5): 96–104.
|
[36] |
祝效华,王燕飞,刘伟吉,等. PDC单齿切削破碎非均质花岗岩性能的评价新方法[J]. 天然气工业,2023,43(4):137–147.
ZHU Xiaohua, WANG Yanfei, LIU Weiji, et al. A new method for evaluating the rock cutting and breaking performance of PDC cutters in heterogeneous granites[J]. Natural Gas Industry, 2023, 43(4): 137–147.
|
[1] | CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104 |
[2] | TANG Ming, QI Xin, CAI Peng, WU Liugen. Development and Test of a MonoHole Expandable Casing System[J]. Petroleum Drilling Techniques, 2023, 51(1): 45-50. DOI: 10.11911/syztjs.2022030 |
[3] | YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034 |
[4] | LIU Xien, SUN Zhifeng, QIU Ao, LI Jie, LUO Bo, PENG Kaixuan, LUO Yulin. Design and Experiment for a Quadrupole Acoustic LWD Tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125-131. DOI: 10.11911/syztjs.2022058 |
[5] | FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017 |
[6] | LI Zhiyong, CHEN Shuai, TAO Ye, MA Pan, YANG Chao. Experimental Study on High Strength Anti-H2S Gel Valves[J]. Petroleum Drilling Techniques, 2016, 44(2): 65-69. DOI: 10.11911/syztjs.201602011 |
[7] | Qian Kun, Yang Shenglai, Dong Junchang, Liu Hui, Liu Pan. A Study of Asphaltene Onset Pressure during High-Pressure Gas Injection[J]. Petroleum Drilling Techniques, 2015, 43(2): 116-119. DOI: 10.11911/syztjs.201502020 |
[8] | Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016 |
[9] | Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020 |
[10] | Yang Bin, Fang Yang, Wang Guozheng, Li Junping. Indoor Test of Heavy Oil Recovery by Gravity Drainage with Solvent[J]. Petroleum Drilling Techniques, 2012, 40(3): 102-106. DOI: 10.3969/j.issn.1001-0890.2012.03.021 |
1. |
李润森,侯冰,周长静,何明舫,刘欣佳. 砂泥岩薄互储层缝控压裂力学机理及穿层判别准则. 中国海上油气. 2025(01): 156-166 .
![]() | |
2. |
侯冰,廖志豪,张庄,罗加伦,琚宜文,王文. 水力压裂物理模拟方法的数字化和智能化发展综述. 辽宁石油化工大学学报. 2025(02): 1-12 .
![]() | |
3. |
端祥刚,胡志明,常进,石雨昕,吴振凯,许莹莹. 页岩储层无支撑缝网区流动能力影响因素研究与进展. 特种油气藏. 2025(01): 22-31 .
![]() | |
4. |
吕振虎,吕蓓,罗垚,吴虎,李丽哲,王博. 基于光纤监测的段内多簇暂堵方案优化. 石油钻探技术. 2024(01): 114-121 .
![]() | |
5. |
贾文婷,牟建业,李小伟,王新亮,张士诚,王丽峰. 射孔参数对砂砾岩储层压裂的影响. 石油钻采工艺. 2024(01): 97-105 .
![]() | |
6. |
房茂军,杜旭林,白玉湖,李昊,张浩,朱海燕. 多薄层致密砂岩储层大型水力压裂三维物理模拟实验. 石油实验地质. 2024(04): 786-798 .
![]() | |
7. |
王剑波,侯冰,滕卫卫,李小迪,刘见通,梁宝兴,张远凯,魏云. 致密砾岩储层力学特征与水力裂缝扩展机理研究进展. 石油科学通报. 2024(06): 972-990 .
![]() | |
8. |
陈瑞杰,熊志文,王瑞,郝少伟. 煤层顶板水力压裂裂缝扩展规律实验研究. 中国矿业. 2024(12): 208-216 .
![]() | |
9. |
刘剑,邵振宝,付京斌,吴珍锁,王耀宗,王会昊. 压裂路径对水力压裂裂纹扩展影响试验研究. 河北工程大学学报(自然科学版). 2024(06): 8-17 .
![]() | |
10. |
刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .
![]() |