Citation: | SHENG Mao, FAN Longang, ZHANG Shuai, et al. Intelligent diagnosis for effectiveness of data-knowledge mixed-driven fracturing ball seat setting [J]. Petroleum Drilling Techniques, 2024, 52(5):76−81. DOI: 10.11911/syztjs.2024085 |
Real-time diagnosis of the effectiveness of the bridge plug ball seat setting is a key step in the staged fracturing of horizontal wells. If the ball seat setting fails, follow-up operations cannot proceed normally. Currently, manual observation of wellhead pressure changes is primarily relied upon, making it difficult to quickly and accurately identify key characteristics. To address this, a combination of expert qualitative judgment and quantitative feature mining of setting data was implemented. Sliding window data was segmented to form
[1] |
刘合. 石油勘探开发人工智能应用的展望[J]. 智能系统学报,2021,16(6):985.
LIU He. Prospect of artificial intelligence application in petroleum exploration and development[J]. CAAI Transactions on Intelligent Systems, 2021, 16(6): 985.
|
[2] |
郭鸣,詹鸿运,冯强,等. 高强度可溶桥塞结构设计与应用[J]. 石油钻采工艺,2020,42(1):52–55.
GUO Ming, ZHAN Hongyun, FENG Qiang, et al. Design and application of high-strength dissolvable bridge plug[J]. Oil Drilling & Production Technology, 2020, 42(1): 52–55.
|
[3] |
肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212.
XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212.
|
[4] |
杨剑锋,杜金虎,杨勇,等. 油气行业数字化转型研究与实践[J]. 石油学报,2021,42(2):248–258.
YANG Jianfeng, DU Jinhu, YANG Yong, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2): 248–258.
|
[5] |
匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1–11. doi: 10.1016/S1876-3804(21)60001-0
KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.1016/S1876-3804(21)60001-0
|
[6] |
李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47.
LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
|
[7] |
曾凡辉,胡大淦,张宇,等. 数据驱动的页岩油水平井压裂施工参数智能优化研究[J]. 石油钻探技术,2023,51(5):78–87.
ZENG Fanhui, HU Dagan, ZHANG Yu, et al. Research on data-driven intelligent optimization of fracturing treatment parameters for shale oil horizontal wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 78–87.
|
[8] |
RAMIREZ A, IRIARTE J. Event recognition on time series frac data using machine learning[R]. SPE 195317, 2019.
|
[9] |
AWAD M M, ELTALEB I, MANSI M, et al. Interpretation of hydraulic fracturing events by analyzing the energy of rate and pressure signals[R]. SPE 201328, 2020.
|
[10] |
袁彬,赵明泽,孟思炜,等. 水平井压裂多类型复杂事件智能识别与预警方法[J]. 石油勘探与开发,2023,50(6):1298–1306.
YUAN Bin, ZHAO Mingze, MENG Siwei, et al. Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing[J]. Petroleum Exploration and Development, 2023, 50(6): 1298–1306.
|
[11] |
盛茂,张家麟,张彦军,等. 基于数据驱动的水平井暂堵压裂有效性评价新模型[J]. 天然气工业,2023,43(9):132–140.
SHENG Mao, ZHANG Jialin, ZHANG Yanjun, et al. A new data-driven effectiveness evaluation model of temporary plugging fracturing for horizontal wells[J]. Natural Gas Industry, 2023, 43(9): 132–140.
|
[12] |
SHEN Yuchang, CAO Dingzhou, RUDDY K, et al. Near real-time hydraulic fracturing event recognition using deep learning me-thods[J]. SPE Drilling & Completion, 2020, 35(3): 478–489.
|
[13] |
董黎明,钟林,周忠泽,等. 全金属可溶球座密封环结构设计与性能分析[J]. 钻采工艺,2023,46(6):106–112.
DONG Liming, ZHONG Lin, ZHOU Zhongze, et al. Structure design and performance analysis of all metal dissolvable ball seat seal rings[J]. Drilling & Production Technology, 2023, 46(6): 106–112.
|
[14] |
罗发强,刘景涛,陈修平,等. 基于BP和LSTM神经网络的顺北油田5号断裂带地层孔隙压力智能预测方法[J]. 石油钻采工艺,2022,44(4):506–514.
LUO Faqiang, LIU Jingtao, CHEN Xiuping, et al. Intelligent method for predicting formation pore pressure in No. 5 fault zone in Shunbei oilfield based on BP and LSTM neural network[J]. Oil Drilling & Production Technology, 2022, 44(4): 506–514.
|
[15] |
康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124.
KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124.
|
[16] |
王俊,曹俊兴,刘哲哿,等. 基于长短期记忆网络的钻前测井曲线预测方法[J]. 成都理工大学学报(自然科学版),2020,47(2):227–236.
WANG Jun, CAO Junxing, LIU Zhege, et al. Method of well logging prediction prior to well drilling based on long short-term memory recurrent neural network[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(2): 227–236.
|
[17] |
周济民,张海晨,王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用[J]. 应用数学和力学,2021,42(9):881–890.
ZHOU Jimin, ZHANG Haichen, WANG Moran. Machine learning with physical empirical model constraints for prediction of shale oil production[J]. Applied Mathematics and Mechanics, 2021, 42(9): 881–890.
|
[18] |
SUN J J, BATTULA A, HRUBY B, et al. Application of both physics-based and data-driven techniques for real-time screen-out prediction with high frequency data[R]. URTEC 2020-3349, 2020.
|
[19] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems: Volume 1. Cambridge: MIT Press, 2015: 802-810.
|
[20] |
祝启康,林伯韬,杨光,等. 低压低产页岩气井智能生产优化方法[J]. 石油勘探与开发,2022,49(4):770–777. doi: 10.1016/S1876-3804(22)60309-4
ZHU Qikang, LIN Botao, YANG Guang, et al. Intelligent production optimization method for a low pressure and low productivity shale gas well[J]. Petroleum Exploration and Development, 2022, 49(4): 770–777. doi: 10.1016/S1876-3804(22)60309-4
|
[21] |
YANG Dongchuan, LI Mingzhu, GUO Jue, et al. An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting[J]. Applied Energy, 2024, 375: 124057. doi: 10.1016/j.apenergy.2024.124057
|
[22] |
SHI Xin, HUANG Gaolu, HAO Xiaochen, et al. Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process[J]. Applied Soft Computing, 2022, 129: 109520. doi: 10.1016/j.asoc.2022.109520
|
[23] |
CHEN Zhuohang, CHEN Jinglong, FENG Yong, et al. Imbalance fault diagnosis under long-tailed distribution: challenges, solutions and prospects[J]. Knowledge-Based Systems, 2022, 258(C): 110008. doi: 10.1016/j.knosys.2022.110008
|
1. |
易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 .
![]() | |
2. |
徐磊,侯彬彬,董丽娜,高宇行. 靖边区域钻井提速技术. 中国石油和化工标准与质量. 2024(04): 177-179 .
![]() | |
3. |
王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 .
![]() | |
4. |
任海涛,王新东,张昕,杨迎新,苏涛,王柏辉,周广静. PDC钻头数字化选型技术及软件开发. 石油机械. 2024(05): 9-16 .
![]() | |
5. |
胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 .
![]() | |
6. |
刘湘华,于洋,刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议. 石油钻探技术. 2024(02): 72-77 .
![]() | |
7. |
刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 .
![]() | |
8. |
李一岚. 顺北超深超高温油气藏钻完井提速关键技术. 石油钻探技术. 2024(03): 21-27 .
![]() | |
9. |
苏前荣,刘伟,张立军,刘松,刘长江,高蓬,纪照生. 顺北奥陶系漏失层钻井液关键技术研究. 内蒙古石油化工. 2024(12): 86-90 .
![]() | |
10. |
李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 .
![]() |