SHENG Mao, FAN Longang, ZHANG Shuai, et al. Intelligent diagnosis for effectiveness of data-knowledge mixed-driven fracturing ball seat setting [J]. Petroleum Drilling Techniques, 2024, 52(5):76−81. DOI: 10.11911/syztjs.2024085
Citation: SHENG Mao, FAN Longang, ZHANG Shuai, et al. Intelligent diagnosis for effectiveness of data-knowledge mixed-driven fracturing ball seat setting [J]. Petroleum Drilling Techniques, 2024, 52(5):76−81. DOI: 10.11911/syztjs.2024085

Intelligent Diagnosis for Effectiveness of Data-Knowledge Mixed-Driven Fracturing Ball Seat Setting

More Information
  • Received Date: April 21, 2024
  • Revised Date: September 05, 2024
  • Available Online: September 24, 2024
  • Real-time diagnosis of the effectiveness of the bridge plug ball seat setting is a key step in the staged fracturing of horizontal wells. If the ball seat setting fails, follow-up operations cannot proceed normally. Currently, manual observation of wellhead pressure changes is primarily relied upon, making it difficult to quickly and accurately identify key characteristics. To address this, a combination of expert qualitative judgment and quantitative feature mining of setting data was implemented. Sliding window data was segmented to form 5792 sets of labeled data. A long short-term memory (LSTM) neural network, using a two-dimensional input of wellhead pressure and displacement, was selected. An intelligent diagnosis model for evaluating the effectiveness of the fracturing ball seat setting was established, utilizing an under-sampling balanced dataset to improve the model’s prediction accuracy. The results show that the setting data exhibits a clear three-stage characteristic: a steep rise, a steep drop, and a gentle rise in wellhead pressure. If the wellhead pressure lacks any of these stage characteristics, it indicates an invalid setting. The wellhead pressure slope exhibits a wide distribution range, making it difficult to form explicit rules for accurate diagnosis. Artificial intelligence technology is used to learn the valid/invalid setting data characteristics from various wellhead pressure forms, producing diagnosis results per second with an accuracy of 96.8% for the test set and 84.3% for the validation set. The findings are expected to provide a method for real-time and automatic diagnosis of the effectiveness of the bridge plug ball seat setting.

  • [1]
    刘合. 石油勘探开发人工智能应用的展望[J]. 智能系统学报,2021,16(6):985.

    LIU He. Prospect of artificial intelligence application in petroleum exploration and development[J]. CAAI Transactions on Intelligent Systems, 2021, 16(6): 985.
    [2]
    郭鸣,詹鸿运,冯强,等. 高强度可溶桥塞结构设计与应用[J]. 石油钻采工艺,2020,42(1):52–55.

    GUO Ming, ZHAN Hongyun, FENG Qiang, et al. Design and application of high-strength dissolvable bridge plug[J]. Oil Drilling & Production Technology, 2020, 42(1): 52–55.
    [3]
    肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212.

    XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212.
    [4]
    杨剑锋,杜金虎,杨勇,等. 油气行业数字化转型研究与实践[J]. 石油学报,2021,42(2):248–258.

    YANG Jianfeng, DU Jinhu, YANG Yong, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2): 248–258.
    [5]
    匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1–11. doi: 10.1016/S1876-3804(21)60001-0

    KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.1016/S1876-3804(21)60001-0
    [6]
    李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47.

    LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
    [7]
    曾凡辉,胡大淦,张宇,等. 数据驱动的页岩油水平井压裂施工参数智能优化研究[J]. 石油钻探技术,2023,51(5):78–87.

    ZENG Fanhui, HU Dagan, ZHANG Yu, et al. Research on data-driven intelligent optimization of fracturing treatment parameters for shale oil horizontal wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 78–87.
    [8]
    RAMIREZ A, IRIARTE J. Event recognition on time series frac data using machine learning[R]. SPE 195317, 2019.
    [9]
    AWAD M M, ELTALEB I, MANSI M, et al. Interpretation of hydraulic fracturing events by analyzing the energy of rate and pressure signals[R]. SPE 201328, 2020.
    [10]
    袁彬,赵明泽,孟思炜,等. 水平井压裂多类型复杂事件智能识别与预警方法[J]. 石油勘探与开发,2023,50(6):1298–1306.

    YUAN Bin, ZHAO Mingze, MENG Siwei, et al. Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing[J]. Petroleum Exploration and Development, 2023, 50(6): 1298–1306.
    [11]
    盛茂,张家麟,张彦军,等. 基于数据驱动的水平井暂堵压裂有效性评价新模型[J]. 天然气工业,2023,43(9):132–140.

    SHENG Mao, ZHANG Jialin, ZHANG Yanjun, et al. A new data-driven effectiveness evaluation model of temporary plugging fracturing for horizontal wells[J]. Natural Gas Industry, 2023, 43(9): 132–140.
    [12]
    SHEN Yuchang, CAO Dingzhou, RUDDY K, et al. Near real-time hydraulic fracturing event recognition using deep learning me-thods[J]. SPE Drilling & Completion, 2020, 35(3): 478–489.
    [13]
    董黎明,钟林,周忠泽,等. 全金属可溶球座密封环结构设计与性能分析[J]. 钻采工艺,2023,46(6):106–112.

    DONG Liming, ZHONG Lin, ZHOU Zhongze, et al. Structure design and performance analysis of all metal dissolvable ball seat seal rings[J]. Drilling & Production Technology, 2023, 46(6): 106–112.
    [14]
    罗发强,刘景涛,陈修平,等. 基于BP和LSTM神经网络的顺北油田5号断裂带地层孔隙压力智能预测方法[J]. 石油钻采工艺,2022,44(4):506–514.

    LUO Faqiang, LIU Jingtao, CHEN Xiuping, et al. Intelligent method for predicting formation pore pressure in No. 5 fault zone in Shunbei oilfield based on BP and LSTM neural network[J]. Oil Drilling & Production Technology, 2022, 44(4): 506–514.
    [15]
    康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124.

    KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124.
    [16]
    王俊,曹俊兴,刘哲哿,等. 基于长短期记忆网络的钻前测井曲线预测方法[J]. 成都理工大学学报(自然科学版),2020,47(2):227–236.

    WANG Jun, CAO Junxing, LIU Zhege, et al. Method of well logging prediction prior to well drilling based on long short-term memory recurrent neural network[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(2): 227–236.
    [17]
    周济民,张海晨,王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用[J]. 应用数学和力学,2021,42(9):881–890.

    ZHOU Jimin, ZHANG Haichen, WANG Moran. Machine learning with physical empirical model constraints for prediction of shale oil production[J]. Applied Mathematics and Mechanics, 2021, 42(9): 881–890.
    [18]
    SUN J J, BATTULA A, HRUBY B, et al. Application of both physics-based and data-driven techniques for real-time screen-out prediction with high frequency data[R]. URTEC 2020-3349, 2020.
    [19]
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems: Volume 1. Cambridge: MIT Press, 2015: 802-810.
    [20]
    祝启康,林伯韬,杨光,等. 低压低产页岩气井智能生产优化方法[J]. 石油勘探与开发,2022,49(4):770–777. doi: 10.1016/S1876-3804(22)60309-4

    ZHU Qikang, LIN Botao, YANG Guang, et al. Intelligent production optimization method for a low pressure and low productivity shale gas well[J]. Petroleum Exploration and Development, 2022, 49(4): 770–777. doi: 10.1016/S1876-3804(22)60309-4
    [21]
    YANG Dongchuan, LI Mingzhu, GUO Jue, et al. An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting[J]. Applied Energy, 2024, 375: 124057. doi: 10.1016/j.apenergy.2024.124057
    [22]
    SHI Xin, HUANG Gaolu, HAO Xiaochen, et al. Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process[J]. Applied Soft Computing, 2022, 129: 109520. doi: 10.1016/j.asoc.2022.109520
    [23]
    CHEN Zhuohang, CHEN Jinglong, FENG Yong, et al. Imbalance fault diagnosis under long-tailed distribution: challenges, solutions and prospects[J]. Knowledge-Based Systems, 2022, 258(C): 110008. doi: 10.1016/j.knosys.2022.110008
  • Related Articles

    [1]MA Shanshan, LI Weiqin, YANG Zhaoxiang, YIN Li, ZHANG Guohui. Seismoelectric logging signal detection based on stochastic resonance system[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025045
    [2]HAO Xiaolong, GAO Guoyin, TAN Haifeng, YANG Cheng, LI Yuehuan. Downhole Compression Algorithm for Remote Detection Acoustic Logging Data Based on Adaptive Differential Pulse Code Modulation[J]. Petroleum Drilling Techniques, 2024, 52(6): 148-155. DOI: 10.11911/syztjs.2024078
    [3]WU Zebing, YUAN Ruofei, ZHANG Wenxi, LIU Jiale. Optimization Design of Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(4): 24-33. DOI: 10.11911/syztjs.2024068
    [4]XU Xiaokai, ZHAO Weina, ZHANG Jinyan, DONG Jingli, SUN Qingxi, WANG Lei. Recursive Algorithm for Electromagnetic Fields from Magnetic Dipole in Layered Triaxial Anisotropic Medium and Its Application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130-139. DOI: 10.11911/syztjs.2023117
    [5]HAN Yujiao. Intelligent Fluid Identification Based on the AdaBoost Machine Learning Algorithm for Reservoirs in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(1): 112-118. DOI: 10.11911/syztjs.2022018
    [6]WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011
    [7]FENG Jin, NI Xiaowei, YANG Qing, GUAN Yao, LIU Diren. Research on Array Lateral Logging Real-Time Inversions Based on Hybrid Simulated Annealing Algorithms[J]. Petroleum Drilling Techniques, 2019, 47(5): 121-126. DOI: 10.11911/syztjs.2019107
    [8]Liu Xiushan, Qi Shangyi, Liu Ziheng. Analytical Algorithm for Normal-Plane Scanning of Interwell Distance[J]. Petroleum Drilling Techniques, 2015, 43(2): 8-13. DOI: 10.11911/syztjs.201502002
    [9]Tu Bing, Li Jingyi, Wang Sicheng, Liu Hang, Zhan Tengxi. Extraction and Algorithm for Pulse Signal in Drilling Fluids in Terms of Manchester Encoding[J]. Petroleum Drilling Techniques, 2014, 42(5): 85-89. DOI: 10.11911/syztjs.201405015
    [10]Liu Bing, Xu Xingping, Li Jizhi. Application of SQP Algorithm to Optimize Perforation in Horizontal Wells[J]. Petroleum Drilling Techniques, 2012, 40(3): 97-101. DOI: 10.3969/j.issn.1001-0890.2012.03.020
  • Cited by

    Periodical cited type(10)

    1. 易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 .
    2. 徐磊,侯彬彬,董丽娜,高宇行. 靖边区域钻井提速技术. 中国石油和化工标准与质量. 2024(04): 177-179 .
    3. 王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 . 本站查看
    4. 任海涛,王新东,张昕,杨迎新,苏涛,王柏辉,周广静. PDC钻头数字化选型技术及软件开发. 石油机械. 2024(05): 9-16 .
    5. 胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 . 本站查看
    6. 刘湘华,于洋,刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议. 石油钻探技术. 2024(02): 72-77 . 本站查看
    7. 刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 . 本站查看
    8. 李一岚. 顺北超深超高温油气藏钻完井提速关键技术. 石油钻探技术. 2024(03): 21-27 . 本站查看
    9. 苏前荣,刘伟,张立军,刘松,刘长江,高蓬,纪照生. 顺北奥陶系漏失层钻井液关键技术研究. 内蒙古石油化工. 2024(12): 86-90 .
    10. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (172) PDF downloads (78) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return