Citation: | HU Wenge. Progress and the way forward of key engineering technologies for “deep underground engineering” in Shunbei Oil and Gas Field [J]. Petroleum Drilling Techniques,2024, 52(2):58-65. DOI: 10.11911/syztjs.2024027 |
To promote the development of ultra-deep oil and gas resources, some key engineering technologies were developed in the Shunbei Oil and Gas Field, summarized in this paper. A series of key drilling technologies were applied in this field, including geology-engineering integration, casing program design method, wellbore collapse prevention technology in fractured zones, well trajectory and geological sweet spot optimization method, reservoir protection technology, and directional drilling technology in ultra-deep and ultra-high temperature formation, etc. Additionally, a series of key completion technologies were also developed, including high-precision stress field inversion algorithm, high-performance acid fracturing fluid, tool-temporary plugging composite multi-stage fracturing technology, and high-efficency wellbore support technology, etc. Furthermore, several key oil recovery technologies were also established, including safe and economic decision-making technology for oil and gas production strings, allocation optimization approach of economic benefits, integrated development program design of oil and gas reservoirs, water shut-off and foaming profile control technology in deep reservoirs, etc. Together, these technologies constitute an engineering technology system for ultra-deep reservoir development. Future research topics are also proposed in this paper, which will focus on the drilling technology that can enhance reserve utilization ratio, the efficient and intelligent completion technology for deep wells, and the enhanced oil recovery technology in deep reservoirs. This will facilitate efficient development of lower abundance reserves, discover new types of oil and gas reservoirs, and create a new sustainable development situation for deep oil and gas exploitation.
[1] |
马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.1016/S1876-3804(22)60001-6
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.1016/S1876-3804(22)60001-6
|
[2] |
张煜,李海英,陈修平,等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质–工程一体化实践与成效[J]. 石油与天然气地质,2022,43(6):1466–1480.
ZHANG Yu, LI Haiying, CHEN Xiuping, et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(6): 1466–1480.
|
[3] |
刘景涛,张文,于洋,等. 二叠系火成岩地层井壁稳定性分析[J]. 中国安全生产科学技术,2019,15(1):75–80.
LIU Jingtao, ZHANG Wen, YU Yang, et al. Analysis on wellbore stability in Permian igneous rock formation[J]. Journal of Safety Science and Technology, 2019, 15(1): 75–80.
|
[4] |
刘景涛,尹飞,赵宁,等. 顺北区块超深井侵入体井壁稳定性分析[J]. 西部探矿工程,2021,33(10):30–34. doi: 10.3969/j.issn.1004-5716.2021.10.010
LIU Jingtao, YIN Fei, ZHAO Ning, et al. Analysis of wellbore stability of ultra deep well intrusion in Shunbei Block[J]. West-China Exploration Engineering, 2021, 33(10): 30–34. doi: 10.3969/j.issn.1004-5716.2021.10.010
|
[5] |
梁瑶,霍守东,李学良,等. 利用绕射信息在裂缝型地层中进行钻前风险评估[J]. 地球物理学报,2023,66(1):46–53.
LIANG Yao, HUO Shoudong, LI Xueliang, et al. Pre-drilling risk assessment using seismic diffraction information in fractured formations[J]. Chinese Journal of Geophysics, 2023, 66(1): 46–53.
|
[6] |
李海英,刘军,龚伟,等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探,2020,25(3):107–120.
LI Haiying, LIU Jun, GONG Wei, et al. Identification and characterization of strike-slip faults and traps of fault-karst reservoir in Shunbei Area[J]. China Petroleum Exploration, 2020, 25(3): 107–120.
|
[7] |
刘雨晴,邓尚,张荣,等. 深层火成岩侵入体和相关构造发育特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 石油与天然气地质,2022,43(1):105–117.
LIU Yuqing, DENG Shang, ZHANG Rong, et al. Characterization and petroleum geological significance of deep igneous intrusions and related structures in the Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 105–117.
|
[8] |
路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234.
LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
|
[9] |
彭达,郗诚,龙隆,等. 基于神经网络井震多信息融合的碳酸盐岩缝洞体预测方法[C]//中国地球物理学会油气地球物理专业委员会,中国石化石油物探技术研究院,江苏省地球物理学会. 2019年油气地球物理学术年会论文集. 北京:中国地球物理学会油气地球物理专业委员会,2019:257−261.
PENG Da, XI Cheng, LONG Long, et al. A prediction method for carbonate rock fractures and cavities based on neural network well seismic multi information fusion[C]//Committee on Petroleum Geophysics, Chinese Geophysical Society, Sinopec Petroleum Geophysical Technology Research Institute, Geophysical Society of Jiangsu Province. Proceedings of the 2019 academic annual conference on oil and gas geophysics. Beijing: Committee on Petroleum Geophysics, Chinese Geophysical Society, 2019: 257−261.
|
[10] |
谢光泽. 地球物理属性融合技术研究[D]. 北京:中国石油大学(北京),2018.
XIE Guangze. Study on the fusion technology of geophysical attributes[D]. Beijing: China University of Petroleum(Beijing), 2018.
|
[11] |
刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.
LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
|
[12] |
李轲. 顺北三区井身结构优化与钻井提速关键技术研究与应用[D]. 西安:西安石油大学,2023.
LI Ke. Research and application of key technologies for wellbore structure optimization and drilling speed improvement in Shunbei Block 3[D]. Xi'an: Xi'an Shiyou University, 2023.
|
[13] |
李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2023,51(1):9–15.
LI Shuanggui, LUO Jiang, YU Yang, et al. Establishing pressure profiles and casing program optimization in the southern Shunbei No.5 Fault Zone[J]. Petroleum Drilling Techniques, 2023, 51(1): 9–15.
|
[14] |
邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.
DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 41(12): 82–94.
|
[15] |
刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136.
LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.
|
[16] |
陈宗琦,刘景涛,陈修平. 顺北油气田古生界钻井提速技术现状与发展建议[J]. 石油钻探技术,2023,51(2):1–6.
CHEN Zongqi, LIU Jingtao, CHEN Xiuping. Up-to-date ROP improvement technologies for drilling in the Paleozoic of Shunbei Oil & Gas Field and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2023, 51(2): 1–6.
|
[17] |
刘彪,吴杰,张俊,等. 基于离散元方法的PDC钻头切削齿破岩机理数值模拟[J]. 矿业研究与开发,2021,41(2):165–169.
LIU Biao, WU Jie, ZHANG Jun, et al. Numerical simulation on the rock breaking of cutter teeth of PDC cutter based on discrete element method[J]. Mining Research and Development, 2021, 41(2): 165–169.
|
[18] |
刘彪,许瑞,王居贺,等. 基于改进的主成分分析法的钻头优选评价模型[J]. 石油机械,2020,48(9):8–14.
LIU Biao, XU Rui, WANG Juhe, et al. Bit selection and evaluation model based on improved principal component analysis[J]. China Petroleum Machinery, 2020, 48(9): 8–14.
|
[19] |
祝效华,李瑞,刘伟吉,等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版),2023,45(4):1–18.
ZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efeici ency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 1–18.
|
[20] |
于洋,南玉民,李双贵,等. 顺北油田古生界钻井提速技术[J]. 断块油气田,2019,26(6):780–783.
YU Yang, NAN Yumin, LI Shuanggui, et al. Technology for increasing drilling speed of Paleozoic stratum in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 780–783.
|
[21] |
范胜,蒋官澄,易浩,等. 抗高温封堵固壁防塌水基钻井液研究与应用[J]. 钻采工艺,2023,46(2):146–152.
FAN Sheng, JIANG Guancheng, YI Hao, et al. Research and application of high-temperature plugging anti-sloughing water-based drilling fluids for wellbore strengthening[J]. Drilling & Production Technology, 2023, 46(2): 146–152.
|
[22] |
陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12–16.
CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12–16.
|
[23] |
方俊伟,董晓强,李雄,等. 顺北油田断溶体储集层特征及损害预防[J]. 新疆石油地质,2021,42(2):201–205.
FANG Junwei, DONG Xiaoqiang, LI Xiong, et al. Characteristics and damage prevention of fault-karst reservoirs in Shunbei Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(2): 201–205.
|
[24] |
翟科军,高伟,李文霞,等. 钻井液用聚合物分子结构与环保性能的关系研究[J]. 钻井液与完井液,2021,38(1):47–53.
ZHAI Kejun, GAO Wei, LI Wenxia, et al. Study on the relationship between molecular structure of polymer for drilling fluids and performance of environmental protection[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 47–53.
|
[25] |
李文霞,王居贺,王治国,等. 顺北油气田超深高温水平井井眼轨迹控制技术[J]. 石油钻探技术,2022,50(4):18–24.
LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 18–24.
|
[26] |
刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17.
LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17.
|
[27] |
于洋,李双贵,高德利,等. 顺北5-5H超深ϕ120.65 mm小井眼水平井钻井技术[J]. 石油钻采工艺,2020,42(3):276–281.
YU Yang, LI Shuanggui, GAO Deli, et al. Drilling techniques used in Well Shunbei 5-5H, an ultradeep slim-hole ϕ120.65 mm horizontal well[J]. Oil Drilling & Production Technology, 2020, 42(3): 276–281.
|
[28] |
杨兰田,张江江,李芳,等. 西部某油田高温高盐环境油套管选材实验研究[J]. 热加工工艺,2023,52(4):44–46.
YANG Lantian, ZHANG Jiangjiang, LI Fang, et al. Experimental research on material selection of high-temperature and high-salt environmental oil casing in western oil field[J]. Hot Working Technology, 2023, 52(4): 44–46.
|
[29] |
张志宏,张江江,高秋英,等. 塔河油田某侧钻深井油管断裂失效原因[J]. 科技导报,2014,32(7):62–66.
ZHANG Zhihong, ZHANG Jiangjiang, GAO Qiuying, et al. Analysis of rupture failure of sidetrack deep well pipe in Tahe Oilfield[J]. Science & Technology Review, 2014, 32(7): 62–66.
|
[30] |
张江江,刘冀宁,高秋英,等. 湿相CO2环境管道内沉积物及对腐蚀影响的定量化研究[J]. 科技导报,2014,32(32):67–71.
ZHANG Jiangjiang, LIU Jining, GAO Qiuying, et al. Sediment in the formation in wet CO2 environment of pipeline and quantitative study of its corrosion effect[J]. Science & Technology Review, 2014, 32(32): 67–71.
|
[31] |
石鑫,李大朋,张志宏,等. 温度对注气井P110油管钢耐蚀性能的影响[J]. 材料保护,2017,50(12):8–10.
SHI Xin, LI Dapeng, ZHANG Zhihong, et al. Effect of temperature on corrosion resistance of tubular steel in gas injection wells[J]. Materials Protection, 2017, 50(12): 8–10.
|
[32] |
张宇,郭继香,杨矞琦,等. 耐高温抗H2S/CO2缓蚀剂的合成及评价[J]. 精细化工,2019,36(11):2309–2316.
ZHANG Yu, GUO Jixiang, YANG Yuqi, et al. Synthesis and evaluation of high temperature resistant H2S/CO2 corrosion inhibitor[J]. Fine Chemicals, 2019, 36(11): 2309–2316.
|
[33] |
赵海洋,石鑫,刘冬梅,等. 适用高温、高Cl-工况下的缓蚀剂合成及评价[J]. 油田化学,2020,37(1):155–158.
ZHAO Haiyang, SHI Xin, LIU Dongmei, et al. Synthesis and evaluation of corrosion inhibitors under high temperature and high Cl- conditions[J]. Oilfield Chemistry, 2020, 37(1): 155–158.
|
[34] |
闫立伟,宋智灵,杜朝锋,等. 天然气泡沫体系流度控制能力影响因素[J]. 油气地质与采收率,2021,28(2):109–118.
YAN Liwei, SONG Zhiling, DU Chaofeng, et al. Influencing factors of fluidity control ability of natural gas foam system[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 109–118.
|
[35] |
黄兆海. 深层稠油高盐水驱油藏深部化学调驱技术的应用:以吐哈油田鲁X区块为例[J]. 石油地质与工程,2021,35(6):110–113.
HUANG Zhaohai. Application of deep chemical profile control and flooding technology in deep heavy oil and high salt water drive reservoir: by taking Lu X Block of Tuha Oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(6): 110–113.
|
[36] |
张利军,谭先红,焦钰嘉,等. 海上低渗油藏 CO2 微泡沫驱提高采收率实验与数值模拟研究[J]. 中国海上油气,2023,35(5):145–153.
ZHANG Lijun, TAN Xianhong, JIAO Yujia, et al. Experimental study and numerical simulation on enhanced oil recoveryby CO2 microfoam flooding in offshore low-permeability reservoirs[J]. China Offshore Oil and Gas, 2023, 35(5): 145–153.
|
[37] |
程宏杰,陈玉琨,李铁栓,等. 低渗透油藏再生氮气泡沫驱实验与应用[J]. 特种油气藏,2022,29(6):104–110.
CHENG Hongjie, CHEN Yukun, LI Tieshuan, et al. Test and application of regenerative nitrogen foam flooding in low-permeability reservoirs[J]. Special Oil & Gas Reserviors, 2022, 29(6): 104–110.
|
[38] |
段友智,艾爽,刘欢乐,等. 形状记忆筛管自充填防砂完井技术[J]. 石油钻探技术,2019,47(5):86–90.
DUAN Youzhi, AI Shuang, LIU Huanle, et al. Shape memory screen self-packing sand control completion technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86–90.
|
[39] |
韦坚,王小军,梁财海,等. 基于卡尔曼滤波的分布式光纤Raman测温系统[J]. 光学技术,2016,42(3):264–267.
WEI Jian, WANG Xiaojun, LIANG Caihai, et al. Distributed optical fiber Raman temperature measurement system based on Kalman filter[J]. Optical Technique, 2016, 42(3): 264–267.
|
[40] |
郑金中,姜广彬,陈伟,等. 井下永久式光纤温度–压力测试技术研究[J]. 石油机械,2010,38(10):55–57.
ZHENG Jinzhong, JIANG Guangbin, CHEN Wei, et al. Research on the testing technology of the borehole permanent optical fiber temperature-pressure[J]. China Petroleum Machinery, 2010, 38(10): 55–57.
|
[41] |
任利华,陈德飞,潘昭才,等. 超深高温油气井永久式光纤监测新技术及应用[J]. 石油机械,2019,47(3):75–80.
REN Lihua, CHEN Defei, PAN Zhaocai, et al. Field application of permanent fiber monitoring for ultra-deep high temperature oil and gas well[J]. China Petroleum Machinery, 2019, 47(3): 75–80.
|
[1] | WANG Zhizhan. Research Progress and Development Prospect of Intelligent Surface Logging Technology[J]. Petroleum Drilling Techniques, 2024, 52(5): 51-61. DOI: 10.11911/syztjs.2024099 |
[2] | LIU Wei, FU Jiasheng, GUO Qingfeng, ZHAO Qing. Research Progress and Prospects of Key Technologies for Intelligent Managed Pressure Drilling[J]. Petroleum Drilling Techniques, 2024, 52(5): 42-50. DOI: 10.11911/syztjs.2024103 |
[3] | ZENG Yijin, WANG Minsheng, GUANG Xinjun, WANG Guo, ZHANG Hongbao, CHEN Zengwei, DUAN Jinan. Progress and Prospects of Sinopec’s Intelligent Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 1-9. DOI: 10.11911/syztjs.2024081 |
[4] | DING Shidong, LU Peiqing, GUO Yintong, LI Zaoyuan, LU Yunhu, ZHOU Shiming. Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104-113. DOI: 10.11911/syztjs.2023076 |
[5] | LI Tao, SU Qiang, YANG Zhe, XU Weiqiang, HU Xihui. Current Practices and Research Directions for Drilling and Completion Technologies for Ultra-Deep Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7-15. DOI: 10.11911/syztjs.2022028 |
[6] | ZHANG Shikun, CHEN Zuo. Status and Prospect of Artificial Intelligence Application in Fracturing Technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69-77. DOI: 10.11911/syztjs.2022115 |
[7] | ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072 |
[8] | YANG Mingqing. Current Status and Application Prospects of Mud Logging in Russia[J]. Petroleum Drilling Techniques, 2018, 46(4): 115-120. DOI: 10.11911/syztjs.2018065 |
[9] | Ming Ruiqing, Zhang Shizhong, Wang Haitao, Hong Yi, Jiang Shulong. Research Status and Prospect of Hydraulic Oscillator Worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116-122. DOI: 10.11911/syztjs.201505020 |
[10] | Sun Xu, Zhao Jinhai, Teng Chunming, Yang Chuanshu, Wang Mingfang. Status and Prospect of Drilling Simulation Technique at Home and Abroad[J]. Petroleum Drilling Techniques, 2012, 40(5): 54-58. DOI: 10.3969/j.issn.1001-0890.2012.05.012 |