Citation: | LIU Wei, FU Jiasheng, GUO Qingfeng, et al. Research progress and prospects of key technologies for intelligent managed pressure drilling [J]. Petroleum Drilling Techniques, 2024, 52(5):42−50. DOI: 10.11911/syztjs.2024103 |
With the gradual development of oil and gas exploration towards complex and difficult-to-use fields such as deep formation, deep water, and unconventional areas, the underground risks such as “surge, leakage, collapse, and sticking” have significantly increased. It is urgent to further develop precise managed pressure drilling (MPD) technology and equipment with higher automation and intelligent control capabilities, accelerate the development from semi-automation, automation, to intelligence, achieve accurate and early prediction of complex working conditions, and control and eliminate drilling risks faster and more accurately. A detailed investigation on the intelligent development of MPD technology and equipment in China and abroad was conducted, and the research progress of intelligent pressure control in equipment such as intelligent control, data acquisition and processing, as well as key technologies including complex underground deep learning methods and intelligent decision-making analysis software was discussed. Preliminary experimental verification shows the technical advantages of intelligent MPD technology, but it still needs to be fully verified and improved on site. In the future, by accelerating the cross-border integration of MPD technology and intelligent technology, it is expected to establish an intelligent pressure control drilling technology system that supports efficient exploration and development of complex oil and gas and help China’s oil and gas engineering technology achieve high-level self-reliance and self-improvement.
[1] |
田野,王成龙,柳亚亚,等. 深水钻井中控压响应时间及其影响因素分析[J]. 石油机械,2023,51(4):61–67.
TIAN Ye, WANG Chenglong, LIU Yaya, et al. Analysis on managed pressure response time and its influential factors in deepwater drilling[J]. China Petroleum Machinery, 2023, 51(4): 61–67.
|
[2] |
张锐尧,李军,杨宏伟,等. 空心球多梯度控压钻井井筒压力控制方法[J]. 天然气工业,2022,42(11):98–105.
ZHANG Ruiyao, LI Jun, YANG Hongwei, et al. A control method of wellbore pressure during multi-gradient managed pressure drilling based on hollow glass sphere[J]. Natural Gas Industry, 2022, 42(11): 98–105.
|
[3] |
何保生,张钦岳,冷雪霜. 墨西哥超深水盐下钻井技术及实践[J]. 中国海上油气,2021,33(6):101–109.
HE Baosheng, ZHANG Qinyue, LENG Xueshuang. Ultra deepwater pre-salt drilling technologies and their practices in Mexico[J]. China Offshore Oil and Gas, 2021, 33(6): 101–109.
|
[4] |
谭鹏,何思龙,李明印,等. 库车坳陷超深层复杂气田钻完井技术[J]. 石油钻采工艺,2021,43(5):580–585.
TAN Peng, HE Silong, LI Mingyin, et al. Drilling and completion technologies for ultra-deep complex gas field in Kuqu Depres-sion[J]. Oil Drilling & Production Technology, 2021, 43(5): 580–585.
|
[5] |
刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.
LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
|
[6] |
刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28.
LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
|
[7] |
Halliburton. FlexTM MPD[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/q5uwmy-7be7kg-450xeq/Flex_MPD.pdf.
|
[8] |
Halliburton. Implementing a flexible MPD approach in Vaca Muerta[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/G1R8FA5S/as/cpp4zcjxtnfh946wgvmgg7p/Flex_MPD-UBD-HAL-70-71_EnP.pdf.
|
[9] |
Weatherford. Victus™ manifold[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/victus-manifold/.
|
[10] |
Weatherford. Victus™ intelligent MPD[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/brochure/products-and-services/drilling/victus-intelligent-mpd/.
|
[11] |
Weatherford. MPD fluid-extraction system[EB/OL]. [2024-08-20]. https://www.weatherford.com/documents/technical-specification-sheet/products-and-services/drilling/mpd-fluid-extraction-system/.
|
[12] |
Schlumberger. I-balance[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/product-sheet/i-balance-ps.ashx.
|
[13] |
Schlumberger. Choke manifolds[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/brochure/choke-manifolds-brochure.ashx.
|
[14] |
Schlumberger. MPD reduces rig operating days in the Bakken[EB/OL]. [2024-08-20]. https://www.slb.com/-/media/files/mi/industry-article/2019-0801-ep-mpd-bakken.ashx.
|
[15] |
NOV. MPowerD choke manifold: 5000S[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-choke-manifold-5000s/mpowerd-choke-manifold-5000s-spec-sheet.pdf.
|
[16] |
CORREA L. Industry’s first truly integrated MPD control system advances offshore drilling efficiency[EB/OL]. [2024-08-20]. https://www.nov.com/-/media/nov/files/products/wbt/wellsite-services/mpowerd-managed-pressure-drilling-systems/industrys-first-truly-integrated-mpd-control-system-advances-offshore-drilling-efficiency--2021-worl.pdf.
|
[17] |
Opla Energy. MPDSmart™ manifold[EB/OL]. [2024-08-20]. https://www.oplaenergy.com/technology-and-solutions/mpd-smart-manifold.
|
[18] |
MAMMADOV E, HOFFARTH D. Revolutionizing rig integration with next-generation MPD equipment: the pressure management device (PMD)[R]. SPE 214552, 2023.
|
[19] |
刘伟,周英操,王瑛,等. 国产精细控压钻井系列化装备研究与应用[J]. 石油机械,2017,45(5):28–32.
LIU Wei, ZHOU Yingcao, WANG Ying, et al. Domestic accurate managed pressure drilling series equipment and technology[J]. China Petroleum Machinery, 2017, 45(5): 28–32.
|
[20] |
付加胜,刘伟,周英操,等. 单通道控压钻井装备压力控制方法与应用[J]. 石油机械,2017,45(1):6–9.
FU Jiasheng, LIU Wei, ZHOU Yingcao, et al. Pressure control method and application of managed pressure drilling equipment with single channel[J]. China Petroleum Machinery, 2017, 45(1): 6–9.
|
[21] |
周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071
ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
|
[22] |
周英操,郭庆丰,蔡骁,等. 精细控压钻井技术及装备研究进展[J]. 钻采工艺,2024,47(4):94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13
ZHOU Yingcao, GUO Qingfeng, CAI Xiao, et al. Research advance of managed pressure drilling technology and equipment[J]. Drilling & Production Technology, 2024, 47(4): 94–104. doi: 10.3969/J.ISSN.1006-768X.2024.04.13
|
[23] |
刘伟,王瑛,郭庆丰,等. 精细控压钻井技术创新与实践[J]. 石油科技论坛,2016,35(4):32–37.
LIU Wei, WANG Ying, GUO Qingfeng, et al. Innovation and application of accurate managed pressure drilling technology[J]. Petroleum Science and Technology Forum, 2016, 35(4): 32–37.
|
[24] |
孙海芳,冯京海,肖新宇,等. 川庆钻探工程公司精细控压钻井系统研发及应用[J]. 钻采工艺,2012,35(2):1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01
SUN Haifang, FENG Jinghai, XIAO Xinyu, et al. Development and application of fine managed pressure drilling (MPD) system of CCDC[J]. Drilling & Production Technology, 2012, 35(2): 1–4. doi: 10.3969/J.ISSN.1006-768X.2012.02.01
|
[25] |
陈若铭,伊明,杨刚. 精细控压钻井系统[J]. 石油科技论坛,2013,32(3):55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014
CHEN Ruoming, YI Ming, YANG Gang. Precise pressure-controlled drilling system[J]. Petroleum Science and Technology Forum, 2013, 32(3): 55–57. doi: 10.3969/j.issn.1002-302x.2013.03.014
|
[26] |
郗凤亮,徐朝阳,马金山,等. 控压钻井自动分流管汇系统设计与数值模拟研究[J]. 石油钻探技术,2017,45(5):23–29.
XI Fengliang, XU Chaoyang, MA Jinshan, et al. Design and numerical simulation of an automatic diverter manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2017, 45(5): 23–29.
|
[27] |
中国石化报. 中国石化十大石油工程技术公开[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27.
China Petrochemical News. Top 10 petroleum engineering technologies publicly issued by Sinopec[EB/OL]. (2024-08-07)[2024-08-07]. https://mp.weixin.qq.com/s?__biz=MjM5Nzc2Mzg1NA==&mid=2651437266&idx=1&sn=4f64983cb0473ad13538b90c578b7ff7&chksm=bcd25472a2a7dc4a7be5eec73b4abd970f59a9bd052db1a8aea7c216b5d582c069459c8d7d93&scene=27.
|
[28] |
VERMA R, MUTHAMIZHVENDAN V, GANESAN S, et al. Case study: first ever implementation of managed pressure drilling to drill exploratory and near wildcat well at ONGC Tripura Asset[R]. IPTC 22005, 2022.
|
[29] |
Halliburton. HalVue® real-time viewer[EB/OL]. [2024-08-20]. https://cdn.brandfolder.io/VUJJLY3X/at/fjkpmsk85t65zv4wkj95756/HalVue_Real-Time_Data_Viewer_H013581_-_DS.pdf.
|
[30] |
ROSTAMI S A, GUMUS F, SIMPKINS D, et al. New generation of MPD drilling software-from quantifying to control[R]. SPE 181694, 2016.
|
[31] |
ROSTAMI S A. Enhancing MPD functionality: successful application of adaptive intelligent drilling software in deepwater, offshore and onshore operations[R]. SPE 185287, 2017.
|
[32] |
eDrilling. eDrilling products[EB/OL]. [2024-08-20]. https://www.edrilling.no/products.
|
[33] |
eDrilling. Facilitating the best state-of-the art preparations and real time support for drilling operations[EB/OL]. [2024-08-20]. https://www.edrilling.no/Customer%20Success%20Examples/ai-in-wellconstruction.
|
[34] |
刘伟,韩霄松,付加胜,等. C/S架构的新型控压钻井计算模拟与控制软件[J]. 吉林大学学报(信息科学版),2024,42(4):637–644.
LIU Wei, HAN Xiaosong, FU Jiasheng, et al. Novel managed pressure drilling simulation and control software based on C/S architecture[J]. Journal of Jilin University(Information Science Edition), 2024, 42(4): 637–644.
|
[35] |
付加胜,刘伟,邹易,等. 新型控压钻井计算模型与模拟系统研究[C]//第一届“油气珠峰”论坛暨2023年钻井基础理论研讨会论文集. 北京:石油工业出版社,2024:10-22.
FU Jiasheng, LIU Wei, ZOU Yi, et al. Research on a novel managed pressure drilling calculation model and simulation system[C]//Proceedings of the First “Oil and Gas Mount Everest” Forum and 2023 Drilling Basic Theory Seminar. Beijing, Petroleum Industry Press, 2024: 10-22.
|
[36] |
FU Jiasheng, LIU Wei, ZHENG Xiangyu, et al. Transfer forest: a deep forest model based on transfer learning for early drilling kick detection[J]. Energies, 2023, 16(5): 2100. doi: 10.3390/en16052100
|
[37] |
LIU Wei, FU Jiasheng, LIANG Yanchun, et al. A well-overflow prediction algorithm based on semi-supervised learning[J]. Energies, 2022, 15(12): 4324. doi: 10.3390/en15124324
|
[38] |
YI Wan, LIU Wei, FU Jiasheng, et al. An improved transformer framework for well-overflow early detection via self-supervised learning[J]. Energies, 2022, 15(23): 8799. doi: 10.3390/en15238799
|
1. |
杨雪,廖锐全,汪瀛. 带压作业用自降解凝胶性能的评价. 油田化学. 2023(02): 211-216 .
![]() | |
2. |
彭博一,于培志,蔡靖儒,曹伶. 高温油藏聚合物凝胶的研究与应用. 应用化工. 2022(10): 2965-2969 .
![]() | |
3. |
向朝纲,贺彬,李华坤,陈鑫,高利华. 抗高温可固化凝胶段塞油气阻隔技术. 天然气勘探与开发. 2022(04): 70-77 .
![]() | |
4. |
吴波,黄志安,王委. D1-1HF井溢漏同存安全钻完井新技术应用. 钻采工艺. 2021(06): 132-135 .
![]() | |
5. |
沈园园,王在明,朱宽亮,吴艳. 溶胶-凝胶法制备核壳结构的延迟破胶剂. 钻井液与完井液. 2020(01): 121-126 .
![]() | |
6. |
黎凌,卫俊佚,张谦. 用于精细控压钻井的无机凝胶隔离塞的研制及现场试验. 石油钻探技术. 2019(01): 45-51 .
![]() | |
7. |
罗发强,韩子轩,柴龙,陈晓飞. 抗高温气滞塞技术的研究与应用. 钻井液与完井液. 2019(02): 165-169 .
![]() | |
8. |
汪瀛,程立,廖锐全,李振,张康卫,袁龙. 低温带压作业用高强度凝胶性能评价. 油田化学. 2019(03): 400-404 .
![]() | |
9. |
潘元,程立,廖锐全,李振,张康卫,袁龙. 一种带压作业化学封堵材料的制备与评价. 油田化学. 2019(04): 582-586+593 .
![]() | |
10. |
李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 .
![]() | |
11. |
吴艳,王在明,徐吉,沈园园,李云峰. 高温流体段塞油气封隔技术的研究与应用. 天然气技术与经济. 2018(04): 38-41+82-83 .
![]() | |
12. |
柴龙,林永学,金军斌,韩子轩. 塔河油田外围高温高压井气滞塞防气窜技术. 石油钻探技术. 2018(05): 40-45 .
![]() | |
13. |
程立,李振,廖锐全,张慢来,刘德基. 不压井作业封堵用高强度冻胶体系的室内性能评价. 油田化学. 2017(03): 408-411 .
![]() | |
14. |
鲁晓华,程立,廖锐全,张慢来,李振. 新型冻胶封隔材料的制备及性能. 油田化学. 2017(04): 576-580+609 .
![]() | |
15. |
李圆,于培志,安玉秀,于铁峰,赵宇光. 高分子聚合物凝胶的性能研究与应用. 钻井液与完井液. 2017(05): 33-38 .
![]() | |
16. |
张弛. 高温凝胶化学堵漏技术在XJ-3井封层堵漏作业中的应用. 能源与环保. 2017(05): 77-80 .
![]() | |
17. |
李志勇,陈帅,陶冶,马攀,杨超. 抗硫化氢高强度冻胶阀试验研究. 石油钻探技术. 2016(02): 65-69 .
![]() |