WANG Dong, LAI Xueming, TANG Qing, ZHOU Junjie. Technologies for Snubbing Services in Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 150-154. DOI: 10.11911/syztjs.2021077
Citation: WANG Dong, LAI Xueming, TANG Qing, ZHOU Junjie. Technologies for Snubbing Services in Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 150-154. DOI: 10.11911/syztjs.2021077

Technologies for Snubbing Services in Horizontal Shale Oil Wells in the Cangdong Sag

More Information
  • Received Date: February 17, 2021
  • Revised Date: July 08, 2021
  • Available Online: July 18, 2021
  • The shale oil reservoir in the Kong-2 member of the Cangdong Sag has ultra-low porosity, ultra-low permeability and high shale content, and thus, it is prone to be contaminated by invasion of fluids including killing fluid during operations. Regarding this problem, the sucker rod pumps, the lift technology of electric submersible pumps, and the associated production string and downhole tools commonly used in shale oil wells were optimized. Then, the technologies for snubbing services in the horizontal shale oil wells in the Cangdong Sag were formed with snubbing service with prefabricated inner blowout preventers, completion with controllable bridge plugs that can temporarily close wellbore, and under-pressure pumping-down operation with cable-laying coiled tubing. Field applications showed that this technologies could successfully address the problems such as lined tubing sealing failures of sucker rod pumps and under-pressure operation failures of electric submersible pumps,etc. After the operations, the reservoir was not contaminated and the pumping-down operation were free from waiting for complete pressure relief.
  • [1]
    闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
    [2]
    赵贤正,周立宏,赵敏,等. 陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006

    ZHAO Xianzheng, ZHOU Lihong, ZHAO Min, et al. Breakthrough and practice of industrial development on continental shale oil: a case study on Kong-2 Member in Cangdong Sag, Bohai Bay Basin[J]. China Petroleum Exploration, 2019, 24(5): 589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006
    [3]
    周立宏,赵贤正,柴公权,等. 陆相页岩油效益勘探开发关键技术与工程实践:以渤海湾盆地沧东凹陷古近系孔二段为例[J]. 石油勘探与开发,2020,47(5):1059–1066.

    ZHOU Lihong, ZHAO Xianzheng, CHAI Gongquan, et al. Key exploration & development technologies and engineering practice of continental shale oil: a case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(5): 1059–1066.
    [4]
    田福春, 刘学伟, 张胜传, 等. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J/OL]. 石油钻探技术: 1-10. (2021-02-04)[2021-02-15]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SYZT20210203000&DbName=CAPJ2021.

    TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, et al. Research on the whole process of slick water fracturing technology of continental shale oil in Dagang Oilfield[J/OL]. Petroleum Drilling Techniques: 1-10. (2021-02-04) [2021-02-15]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SYZT20210203000&DbName=CAPJ2021.
    [5]
    蒋官澄,王晓军,关键,等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术,2012,40(1):69–73. doi: 10.3969/j.issn.1001-0890.2012.01.014

    JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73. doi: 10.3969/j.issn.1001-0890.2012.01.014
    [6]
    张振华,鄢捷年. 低渗透砂岩储集层水锁损害影响因素及预测方法研究[J]. 石油勘探与开发,2000,27(3):75–78. doi: 10.3321/j.issn:1000-0747.2000.03.023

    ZHANG Zhenhua, YAN Jienian. The study of influence factors and predicting method of water blocking in the low-permeable sandstone formations[J]. Petroleum Exploration and Development, 2000, 27(3): 75–78. doi: 10.3321/j.issn:1000-0747.2000.03.023
    [7]
    何勇明,樊中海,孙尚如,等. 低渗透油藏污染井污染前后的产能预测新模型[J]. 石油钻探技术,2009,37(4):93–95. doi: 10.3969/j.issn.1001-0890.2009.04.024

    HE Yongming, FAN Zhonghai, SUN Shangru, et al. A new model of productivity prediction for low permeability reservoirs before and after damage[J]. Petroleum Exploration and Development, 2009, 37(4): 93–95. doi: 10.3969/j.issn.1001-0890.2009.04.024
    [8]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. doi: 10.11911/syztjs.2019076

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10. doi: 10.11911/syztjs.2019076
    [9]
    刘东明. 不压井工艺在海洋油田不同管柱的应用分析[J]. 石油钻采工艺,2016,38(2):191–194.

    LIU Dongming. Application of snubbing process in different pipe strings in offshore oilfields[J]. Oil Drilling & Production Technology, 2016, 38(2): 191–194.
    [10]
    曲绍刚. 高温不压井作业工艺技术研究与试验[J]. 石油矿场机械,2006,35(5):93–95. doi: 10.3969/j.issn.1001-3482.2006.05.029

    QU Shaogang. The research and testing of high-temperature snubbing operation technology[J]. Oil Field Equipment, 2006, 35(5): 93–95. doi: 10.3969/j.issn.1001-3482.2006.05.029
    [11]
    孙永明,李迪洋. 带压作业现状与发展浅析[J]. 油气田环境保护,2011,21(6):78–79. doi: 10.3969/j.issn.1005-3158.2011.06.026

    SUN Yongming, LI Diyang. The current operation situation with pressure and development[J]. Environmental Protection of Oil & Gas Fields, 2011, 21(6): 78–79. doi: 10.3969/j.issn.1005-3158.2011.06.026
    [12]
    王炜. 不压井作业装置技术现状与应用分析[J]. 石油机械,2014,42(10):86–89. doi: 10.3969/j.issn.1001-4578.2014.10.021

    WANG Wei. The technical status and application analysis of snubbing operation device[J]. China Petroleum Machinery, 2014, 42(10): 86–89. doi: 10.3969/j.issn.1001-4578.2014.10.021
    [13]
    王伟佳,熊江勇,张国锋,等. 页岩气井连续油管辅助压裂试气技术[J]. 石油钻探技术,2015,43(5):88–93. doi: 10.11911/syztjs.201505015

    WANG Weijia, XIONG Jiangyong, ZHANG Guofeng, et al. Auxiliary fracturing and testing of gas in shale gas well with coiled tubing[J]. Petroleum Drilling Techniques, 2015, 43(5): 88–93. doi: 10.11911/syztjs.201505015
    [14]
    尹洪军,赵二猛,李兴科,等. 致密油藏分段压裂水平井合理试采方式研究[J]. 特种油气藏,2016,23(3):79–82. doi: 10.3969/j.issn.1006-6535.2016.03.018

    YIN Hongjun, ZHAO Ermeng, LI Xingke, et al. Reasonable production test of multi-stage fractured horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 79–82. doi: 10.3969/j.issn.1006-6535.2016.03.018
    [15]
    刘东明,张锐,胡伟杰,等. 海上油气田不压井作业工艺的可行性试验研究[J]. 中外能源,2014(4):55–60.

    LIU Dongming, ZHANG Rui, HU Weijie, et al. The feasibility research of the snubbing operation technology in the offshore oil & gas field[J]. Sino-Global Energy, 2014(4): 55–60.
    [16]
    王伟佳. 页岩气水平井连续油管带压打捞长电缆技术[J]. 石油钻探技术,2018,46(3):109–113. doi: 10.11911/syztjs.2018057

    WANG Weijia. The technology of long cable snubbing fishing through coiled tubing in horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2018, 46(3): 109–113. doi: 10.11911/syztjs.2018057
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. DOI: 10.11911/syztjs.2021047
    [3]YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, KE Ke, WANG Zhiyuan. Temperature Field Prediction Model for Multi-Layer Commingled Production Wellbore in Intelligent Wells and It's Application[J]. Petroleum Drilling Techniques, 2019, 47(4): 83-91. DOI: 10.11911/syztjs.2019049
    [4]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [5]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [6]Sun Xiaohui, Sun Baojiang, Wang Zhiyuan, Wang Jintang. The Prediction of Hydrate Formation Regions in the Wellbore during Supercritical Carbon Dioxide Drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 13-19. DOI: 10.11911/syztjs.201506003
    [7]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [8]Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(3)

    1. 刘拯君,张衍君,廖婉蓉,杨兵,杨柳,周德胜. 页岩储层盐离子扩散规律及其在压裂缝网诊断中的应用. 新疆石油天然气. 2025(01): 41-49 .
    2. 端祥刚,胡志明,常进,石雨昕,吴振凯,许莹莹. 页岩储层无支撑缝网区流动能力影响因素研究与进展. 特种油气藏. 2025(01): 22-31 .
    3. 雷刚,任建飞,刘佰衢,熊健,刘向君,程万,梁利喜,黎子阳. 超临界CO_2—水—岩相互作用下龙马溪组页岩物理特性演化及其对井壁稳定性影响. 天然气工业. 2025(05): 136-149 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (472) PDF downloads (104) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return