Citation: | SUN Ting, ZHAO Ying, YANG Jin, YIN Qishuai, WANG Wenxing, CHEN Yuan. Real-Time Intelligent Identification Method under Drilling Conditions Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2019, 47(5): 28-33. DOI: 10.11911/syztjs.2019033 |
At present, the analysis of drilling time-efficiency usually relies on manual post-analysis, which is subjective and arbitrary, and not able to reflect the real field situation in time, with a lot of deviation. In order to identify drilling conditions automatically and accurately in real time and improve drilling efficiency, a data-driven real-time identification method of drilling conditions based on support vector machine (SVM) has been put forward, and established several intelligent identification models. By analyzing and comparing the kernel functions in the models, the optimal model parameters were obtained. Logging data from four wells were used to verify the correctness of the model, and the recognition results were basically consistent with the actual working conditions, and the recognition accuracy under six working conditions was higher than 95%. The analysis of drilling time-efficiency showed that the application of working condition identification result in drilling process shortened the invisible non-production time. Support vector machine has realized real-time intelligent identification of drilling conditions, and improved drilling time-efficiency, which could meet the requirements of digital and intelligent development of oilfields.
[1] |
ALSALAMA A M, CANLAS J P, GHARBI S H. An integrated system for drilling real time data analytics[R]. SPE 181001, 2016.
|
[2] |
BALAJI K, RABIEI M, SUICMEZ V, et al. Status of data-driven methods and their applications in oil and gas industry[R]. SPE 190812, 2018.
|
[3] |
刘刚.钻井复杂自适应智能预警模型及应用研究[D].西安: 西安石油大学, 2018.
LIU Gang. Drilling complex adaptive intelligent early warning model[D]. Xi'an: Xi'an Shiyou University, 2018.
|
[4] |
袁野.井眼轨迹预测及井眼轨迹三维可视化研究[D].大庆: 东北石油大学, 2017.
YUAN Ye. Well trajectory prediction and 3D visualization study of well trajectory[D]. Daqing: Northeastern University of Petroleum, 2017.
|
[5] |
孙万海.基于SVM和PSO的钻井事故智能预警系统研究[D].西安: 西安石油大学, 2014.
SUN Wanhai. An intelligent early warning system for drilling accidents based on SVM and PSO[D]. Xi'an: Xi'an Shiyou University, 2014.
|
[6] |
王江萍,孟祥芹,鲍泽富. 应用神经网络技术诊断钻井事故[J]. 西安石油大学学报(自然科学版), 2008, 23(2): 99–102. doi: 10.3969/j.issn.1673-064X.2008.02.024
WANG Jiangping, MENG Xiangqin, BAO Zefu. Diagnosis of drilling faults using neural network technology[J]. Xi'an University of Petroleum(Natural Science Edition), 2008, 23(2): 99–102. doi: 10.3969/j.issn.1673-064X.2008.02.024
|
[7] |
YIN Qishuai, YANG Jin, ZHOU Bo, et al. Improve the drilling operations efficiency by the big data mining of real-time logging[R]. SPE 189330, 2018.
|
[8] |
王小川.MATLAB神经网络43个案例分析[M].北京: 北京航空航天大学出版社, 2013: 102-108.
WANG Xiaochuan. 43 case analysis of MATLAB neural net-work[M]. Beijing: Beihang University Press, 2013:102-108.
|
[9] |
狄勤丰,吴志浩,王文昌,等. 基于SVM的套管最大von Mises应力预测方法[J]. 石油钻探技术, 2019, 47(3): 62–67.
DI Qinfeng, WU Zhihao, WANG Wenchang, et al. An prediction method for determining the maximum von Mises stress in casing based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62–67.
|
[10] |
彭成勇,吕欣润,马新仿,等. 海上低渗气田综合多因素压裂选井选层方法[J]. 断块油气田, 2015, 22(4): 508–513.
PENG Chengyong, LYU Xinrun, MA Xinfang, et al. Fractured well and layer selection by multi-factor optimization for low permeability offshore gas field[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 508–513.
|
[11] |
徐生江,李杰,吴继伟,等. 基于支持向量机的钻井液高温高压静态密度预测模型[J]. 钻井液与完井液, 2014, 31(3): 28–31.
XU Shengjiang, LI Jie, WU Jiwei, et al. HTHP static mud density prediction model based on support vector machine[J]. Drilling Fluid & Completion Fluid, 2014, 31(3): 28–31.
|
[12] |
陈冲,张仕民,彭鹤,等. 基于支持向量机的钻柱黏滑振动等级评估方法[J]. 石油机械, 2019, 47(1): 20–26.
CHEN Chong, ZHANG Shimin, PENG He, et al. Research on stick-slip vibration level estimation of drillstring based on SVM[J]. China Petroleum Machinery, 2019, 47(1): 20–26.
|
[13] |
王杰祥,陈征,靖伟,等. 基于支持向量机的二氧化碳非混相驱效果预测[J]. 石油钻探技术, 2015, 43(2): 84–89.
WANG Jiexiang, CHEN Zheng, JING Wei, et al. Prediction of the effect CO2 immiscible flooding based on support vector machine[J]. Petroleum Drilling Techniques, 2015, 43(2): 84–89.
|
[14] |
陈民锋,白晓虎,郑伟,等. 基于支持向量机的早期聚合物驱动态预测研究[J]. 断块油气田, 2012, 19(2): 199–202.
CHEN Minfeng, BAI Xiaohu, ZHENG Wei, et al. Development index prediction of early polymer flooding based on support vector machine[J]. Fault-Block Oil & Gas Field, 2012, 19(2): 199–202.
|
[15] |
赵廷峰,赵春艳,何帆,等. 抽油杆柱磨损分析与安全性评价[J]. 石油机械, 2017, 45(8): 65–70.
ZHAO Tingfeng, ZHAO Chunyan, HE Fan, et al. Wear analysis and safety assessment of sucker rod[J]. China Petroleum Machinery, 2017, 45(8): 65–70.
|
[16] |
BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]// Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT'92). Pittsburgh: ACM Press, 1992: 144-152.
|
[17] |
JIN Chi, WANG Liwei. Dimensionality dependent PAC-Bayes margin bound[C]// NIPS′12 Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012(1): 1034-1042.
|
1. |
王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 .
![]() | |
2. |
翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 .
![]() | |
3. |
刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 .
![]() | |
4. |
贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 .
![]() | |
5. |
吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 .
![]() | |
6. |
赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 .
![]() | |
7. |
王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 .
![]() | |
8. |
王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 .
![]() | |
9. |
马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 .
![]() | |
10. |
王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 .
![]() | |
11. |
史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 .
![]() | |
12. |
李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 .
![]() | |
13. |
李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 .
![]() | |
14. |
李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
![]() | |
15. |
牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 .
![]() | |
16. |
迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 .
![]() | |
17. |
庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 .
![]() | |
18. |
光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 .
![]() | |
19. |
孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 .
![]() |