Citation: | KUANG Yuchun, ZHANG Tao, LIN Wei. Fabrication and application of drill string dynamics experiment bench for small-scale horizontal wells [J]. Petroleum Drilling Techniques, 2024, 52(4):15-23. DOI: 10.11911/syztjs.2024066 |
In the process of horizontal well drilling, the motion law of the drill bit and the drill string is very complex. The cost of studies by conducting site tests for the vibration of the drill bit and the drill string is high, which makes it difficult to accurately decouple various factors. In addition, the data sampling rate is low, hindering the systematic analysis. Therefore, based on physical similarity, a drill string dynamics simulation experiment bench for small-scale horizontal wells was designed on the basis of micro drill bit, drill string, and rock. The segmented casing was designed on the drill string to simulate the constraint of casing on the drill string. In order to more truly reflect the impact of the interaction between drill bit and rock on drill pipe and drill bit vibration, a micro polycrystalline diamond compact (PDC) bit was designed to simulate rock breaking. Laboratory experiments of drill strings in horizontal wells were carried out to study the effect law of coupling vibration, rotational speed, and weight on bit (WOB) on the vibration of the drill string system. The results show that the axial vibration of the drill bit has a great influence on the torsional vibration of the drill bit. When the drill string is under torsional vibration, the power spectral density of the drill bit is obviously higher than that under constant rotation. With the increase in the rotation speed, the transverse vibration acceleration of the drill bit and drill string also increases, and the vibration amplitude of the drill bit under torsional vibration within the main frequency increases. With the increase in WOB, stick-slip vibration and transverse vibration of the drill bit are intensified, but the axial vibration is not significantly affected.
[1] |
王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.
WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
|
[2] |
QIU Hongyuan, YANG Jianming, BUTT S, et al. Investigation on random vibration of a drillstring[J]. Journal of Sound and Vibration, 2017, 406: 74–88. doi: 10.1016/j.jsv.2017.06.016
|
[3] |
高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议[J].石油钻探技术,2024,52(2):1-11.
GAO Deli, HUANG Wenjun. Research and development suggestions on theory and techniques in ultra-deep well engineering[J]. Petroleum Drilling Techniques, 2024, 52(2): 1-11.
|
[4] |
ELSAYED M A, PHUNG C C. Modeling of drillstrings[C]//ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. New York: ASME, 2005: 15-24.
|
[5] |
NAVARRO-LÓPEZ E M. An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring[J]. Nonlinear Analysis: Real World Applications, 2009, 10(5): 3162–3174. doi: 10.1016/j.nonrwa.2008.10.025
|
[6] |
LIAO C M, BALACHANDRAN B, KARKOUB M, et al. Drill-string dynamics: reduced-order models and experimental studies[J]. Journal of Vibration and Acoustics, 2011, 133(4): 041008. doi: 10.1115/1.4003406
|
[7] |
姚永汉,狄勤丰,朱卫平,等. 底部钻具组合的涡动特征分析[J]. 石油钻探技术,2010,38(4):84–88.
YAO Yonghan, DI Qinfeng, ZHU Weiping, et al. Analysis of whirling properties of bottom hole assembly[J]. Petroleum Drilling Techniques, 2010, 38(4): 84–88.
|
[8] |
石祥超,焦烨,刘景涛,等. 考虑深井井下动力钻具影响的钻柱粘滑振动规律[J]. 天然气工业,2024,44(6):87–97.
SHI Xiangchao, JIAO Ye, LIU Jingtao, et al. Stick-slip vibration law of drill strings under the influence of mud motors in deep wells[J]. Natural Gas Industry, 2024, 44(6): 87–97.
|
[9] |
吕苗荣,沈诗刚. 钻柱黏滑振动动力学研究[J]. 西南石油大学学报(自然科学版),2014,36(6):150–159.
LYU Miaorong, SHEN Shigang. The simulation and analysis of drillstring stick-slip vibration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(6): 150–159.
|
[10] |
滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39.
TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.
|
[11] |
WILSON J K, WHITACRE T, HEISIG G. High-frequency at-bit measurements provide new insights into torsional dynamics when drilling with steerable mud motors in unconventional horizontal wells[R]. SPE 194072, 2019.
|
[12] |
CHEN Shilin, WISINGER J, DUNBAR B, et al. Identification and mitigation of friction- and cutting action-induced stick-slip vibrations with PDC bits[R]. SPE 199639, 2020.
|
[13] |
RAYMOND D W, ELSAYED M A, POLSKY Y, et al. Laboratory simulation of drill bit dynamics using a model-based servohydraulic controller[J]. Journal of Energy Resources Technology, 2008, 130(4): 043013.
|
[14] |
KHULIEF Y A, AL-SULAIMAN F A. Laboratory investigation of drillstring vibrations[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223(10): 2249–2262. doi: 10.1243/09544062JMES1550
|
[15] |
LU Haochuan, DUMON J, CANUDAS-DE-WIT C. Experimental study of the D-OSKIL mechanism for controlling the stick-slip oscillations in a drilling laboratory testbed[C]//2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC). Piscataway, NJ: IEEE Press, 2009: 1551-1556.
|
[16] |
FRANCA L F P. Drilling action of roller-cone bits: modeling and experimental validation[J]. Journal of Energy Resources Technology, 2010, 132(4): 043101. doi: 10.1115/1.4003168
|
[17] |
FORSTER I, MACFARLANE A, DINNIE R. Asymmetric vibration damping tool-small scale rig testing and full scale field testing[R]. SPE 128458, 2010.
|
[18] |
FORSTER I. Axial excitation as a means of stick slip mitigation-small scale rig testing and full scale field testing[R]. SPE 139830, 2011.
|
[19] |
VLAJIC N, LIAO C M, KARKI H, et al. Draft: stick-slip motions of a rotor-stator system[J]. Journal of Vibration and Acoustics, 2014, 136(2): 021005. doi: 10.1115/1.4025994
|
[20] |
张东霄,李波,邱琳琳,等. 基于相似原理的钻柱振动模拟试验研究[J]. 矿山机械,2016,44(5):8–12.
ZHANG Dongxiao, LI Bo, QIU Linlin, et al. Simulation test study on vibration of drill string based on similarity principle[J]. Mining & Processing Equipment, 2016, 44(5): 8–12.
|
[21] |
温欣,管志川,邵冬冬,等. 大斜度井眼中钻柱运动特性模拟试验[J]. 中国石油大学学报(自然科学版),2018,42(2):79–86. doi: 10.3969/j.issn.1673-5005.2018.02.009
WEN Xin, GUAN Zhichuan, SHAO Dongdong, et al. Experimental study of dynamic characteristics of drillstring in highly deviated well[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(2): 79–86. doi: 10.3969/j.issn.1673-5005.2018.02.009
|
[22] |
任福深,刘建华,李洋,等. 基于相似理论的水平受压钻柱试验装置研制[J]. 石油机械,2016,44(4):12–16.
REN Fushen, LIU Jianhua, LI Yang, et al. Development of similarity theory-based horizontal well drill string test apparatus[J]. China Petroleum Machinery, 2016, 44(4): 12–16.
|
[23] |
LIAN Zhanghua, ZHANG Qiang, LIN Tiejun, et al. Experimental and numerical study of drill string dynamics in gas drilling of horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2015, 27(part 3): 1412-1420.
|
[24] |
WESTERMANN H, GORELIK I, RUDAT J, et al. A new test rig for experimental studies of drillstring vibrations[J]. SPE Drilling & Completion, 2015, 30(2): 119–128.
|
[25] |
LI Wei, HUANG Genlu, NI Hongjian, et al. Modeling and experimental study on motion states of laboratory-scale bottom hole assembly in horizontal wells[J]. Energies, 2020, 13(4): 925. doi: 10.3390/en13040925
|
[26] |
ABDO J, HASSAN E, AL-SHABIBI A. Fabrication of experimental setup for investigation of drill string fatigue failure[C]//ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2017: V008T12A055.
|
[27] |
ESMAEILI A, ELAHIFAR B, FRUHWIRTH R K, et al. Laboratory scale control of drilling parameters to enhance rate of penetration and reduce drill string vibration[R]. SPE 160872, 2012.
|
[28] |
邹德永,王瑞和. 刀翼式PDC钻头的侧向力平衡设计[J]. 中国石油大学学报(自然科学版),2005,29(2):42–44. doi: 10.3321/j.issn:1000-5870.2005.02.010
ZOU Deyong, WANG Ruihe. Lateral force balancing design of blade PDC bits[J]. Journal of China University of Petroleum(Edition of Natural Science), 2005, 29(2): 42–44. doi: 10.3321/j.issn:1000-5870.2005.02.010
|
[29] |
XUE Qilong. Data analytics for drilling engineering: theory, algorithms, experiments, software[M]. Cham: Springer, 2020.
|
1. |
姚梦麟,陶云贺,贺洪举,侯克均,刘海军,熊宇,张冲. 致密砂岩碎屑颗粒粒度定量表征及对产能的指示意义. 地质科技通报. 2025(02): 214-223 .
![]() | |
2. |
原建伟,刘美佳,李超,吴春新,马栋. 窄河道油藏水平井边界校正系数研究. 石油钻探技术. 2023(01): 86-90 .
![]() | |
3. |
唐晓敏,殷雪松,吕亚娟,宋延杰,陈学洋,易俊. 基于孔隙结构储层分类的中低孔特低渗储层渗透率确定——以B区块S油层为例. 地球物理学进展. 2023(01): 271-284 .
![]() | |
4. |
苏静,杨璐,邵广辉,林茂山,张艳丽,胡旋,董旭龙. 玛湖凹陷砂砾岩储层分类与产能预测方法研究. 长江大学学报(自然科学版). 2023(06): 30-40 .
![]() | |
5. |
魏锋,陈现,王迪. 东海X气田基于测井参数的渗透率及产能预测方法研究. 海洋石油. 2023(04): 83-86+95 .
![]() | |
6. |
殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 .
![]() | |
7. |
刘君毅,冯进,管耀,肖张波,王清辉,刘伟男. 基于改进电成像孔隙度谱的海洋低孔低渗砂岩渗透率评价方法. 测井技术. 2023(06): 746-752 .
![]() | |
8. |
王鑫,张旭阳,黄长兵,汪康,顾明翔,吴伟. 试油数据在估算致密砂砾岩储层渗透率中的应用. 断块油气田. 2022(02): 214-217+238 .
![]() | |
9. |
侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 .
![]() | |
10. |
刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 .
![]() |