LIAO Maolin, ZHOU Yingcao, SU Yinao, LIAN Zhilong, JIANG Hongwei. A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031
Citation: LIAO Maolin, ZHOU Yingcao, SU Yinao, LIAN Zhilong, JIANG Hongwei. A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56-62. DOI: 10.11911/syztjs.2019031

A Study of the Dynamic Analysis and Design Method of Deepwater Drilling String Systems

More Information
  • Received Date: November 26, 2018
  • Revised Date: February 14, 2019
  • Available Online: March 29, 2019
  • During deepwater drilling operations, the drilling string extending from a platform to the bottom hole will collide and rub with the riser or wellbore at multiple points at different depths, presenting the characteristics of nonlinear contact. In order to accurately understand the nonlinear dynamic characteristics of deepwater drilling string systems, we proposed a dynamic model that based on the structure of pipe-in-pipe. The dynamic response simulation was conducted by using Abaqus finite element software, and then the simulation results were imported to Isight optimization software to carry out the multi-objective optimization design based on reliability analysis to determine the combination of design parameters that meet the requirement of engineering feasibility and safety reliability. The study suggests that the overall deformation of the string system from the proposed pipe-in-pipe model is smaller when compared with a model that only considers the riser, indicating that the overall offset of deepwater drilling string system is restrained by the interaction between the inner and outer strings. In addition, the proposed multi-objective optimization design method based on reliability analysis can effectively avoid the failed optimization design caused by parameter fluctuations in the vicinity of the constraint boundary.

  • [1]
    周守为, 刘清友.深水钻井隔水管系统力学行为理论及应用研究[M].北京: 科学出版社, 2016: 1-8.

    ZHOU Shouwei, LIU Qinyou. Theory and application research of deepwater drilling riser system mechanical behavior[M]. Beijing: Science Press, 2016: 1-8.
    [2]
    BURKE B G. An analysis of marine risers for deep water[J]. Journal of Petroleum Technology, 1974, 26(4): 455–465.
    [3]
    SIMMONDS D G. Dynamic analysis of the marine riser[R]. SPE 9735, 1980.
    [4]
    KROLIKOWSKI L P, GAY T A. An improved linearization technique for frequency domain riser analysis[R]. OTC 3777, 1980.
    [5]
    DAREING D W, HUANG T. Natural frequencies of marine drilling risers[J]. Journal of Petroleum Technology, 1976, 28(7): 813–818.
    [6]
    KIRK C L, ETOK E U, COOPER M T. Dynamic and static analysis of a marine riser[J]. Applied Ocean Research, 1979, 1(3): 125–135.
    [7]
    PATEL M H, SAROHIA S, NG K F. Finite-element analysis of the marine riser[J]. Engineering Structures, 1984, 6(3): 175–184.
    [8]
    王宴滨, 高德利, 房军. 海洋钻井隔水管–钻井液横向耦合振动特性[J]. 石油钻采工艺, 2015, 13(1): 25–29.

    WANG Yanbin, GAO Deli, FANG Jun. Characteristic analysis on transverse coupling vibration of offshore drilling riser-drilling fluid[J]. Oil Drilling & Production Technology, 2015, 13(1): 25–29.
    [9]
    闫铁, 刘珊珊, 毕雪亮, 等. 考虑钻柱作用的深海隔水管柱力学分析[J]. 石油矿场机械, 2014, 43(8): 13–17.

    YAN Tie, LIU Shanshan, BI Xueliang, et al. Mechanical analysis of deep sea riser considering the effects of drill string[J]. Oil Field Equipment, 2014, 43(8): 13–17.
    [10]
    YAZDCHI M, CRISFELD M A. Non-linear dynamic behaviour of flexible marine pipes and risers[J]. International Journal for Numerical Methods in Engineering, 2002, 54(9): 1265–1308.
    [11]
    RAMAN-NAIR W R, BADDOUR R E. Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations[J]. Multibody System Dynamics, 2003, 10(4): 393–423.
  • Related Articles

    [1]WU Zebing, YUAN Ruofei, ZHANG Wenxi, LIU Jiale. Optimization Design of Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(4): 24-33. DOI: 10.11911/syztjs.2024068
    [2]WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, ZHANG Zhi, ZHANG Jianbo, SUN Baojiang. Multi-Solution Analysis and Optimization Strategy for Intelligent Well Killing in Deep Formation[J]. Petroleum Drilling Techniques, 2024, 52(2): 136-145. DOI: 10.11911/syztjs.2024034
    [3]LYU Zhenhu, LYU Bei, LUO Yao, WU Hu, LI Lizhe, WANG Bo. Optimization of In-Stage Multi-Cluster Temporary Plugging Scheme Based on Optical Fiber Monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114-121. DOI: 10.11911/syztjs.2024014
    [4]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [5]ZHAO Jin, ZHAO Xing, CAI Peng, PENG Qi, RAO Jiaqi. Development of Coiled Tubing Jet Tools with Multi-Hole Nozzles and Cleaning Parameter Optimization[J]. Petroleum Drilling Techniques, 2023, 51(3): 83-89. DOI: 10.11911/syztjs.2023061
    [6]WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011
    [7]HAO Dilong, HE Xia, WANG Guorong, FANG Xing, LIAO Daisheng, FANG Haihui. Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151
    [8]CUI Wenhao, SU Zubo, KANG Jian, HAN Guangshun, LYU Yiming, ZHU Hongzheng. Key Technology of Water Detection by Dragging the Pipe String in Multi-Stage Fractured Horizontal Well[J]. Petroleum Drilling Techniques, 2018, 46(1): 97-102. DOI: 10.11911/syztjs.2018014
    [9]Sheng Leixiang, Wang Rongyao, Xu Liangbin, Jiang Shiquan, Zhou Jianliang. Safety Analysis of the Hang-off of Deepwater Drilling Risers during a Typhoon Emergency Period[J]. Petroleum Drilling Techniques, 2015, 43(4): 25-29. DOI: 10.11911/syztjs.201504005
    [10]Wang Lei, Zhang Hui, Zhou Yuyang, Ke Ke, Zhang Jinshuang, Peng Xing. Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
  • Cited by

    Periodical cited type(13)

    1. 马永乾,赵鹏,畅元江,王仕超,张晏铭. 基于LAGRANGE方程的深水钻井隔水管–水下井口系统动力分析. 应用科技. 2024(01): 151-157 .
    2. 王文昌,徐祖凯,周星,王昭彬,陈锋. 超深井钻柱动态疲劳失效特征及参数优选. 石油钻探技术. 2024(02): 118-125 . 本站查看
    3. 畅元江,王仕超,李健,刘秀全. 深水隔水管-防喷器组耦合系统动力学建模与仿真验证. 振动与冲击. 2024(11): 1-8 .
    4. 狄勤丰,骆大坤,秦垦,王文昌,陈锋. 考虑“筒中筒”耦合作用的深水隔水管柱与钻柱碰摩运动规律. 石油钻采工艺. 2024(01): 25-32 .
    5. 王高伟,廖茂林,蒋宏伟,郜志英,房超. 基于钻井液上返流动作用下的隔水管动力学行为研究. 船舶力学. 2023(05): 719-730 .
    6. 孙巧雷,张辉易,姚力萍,李乐勤,张圆圆,冯定. 海上管中管结构力学研究现状与发展. 科学技术与工程. 2023(21): 8907-8915 .
    7. 曹峰,胡波,王安伟,刘永亮. 压裂泵的数值分析及仿真标定验证. 机械设计与研究. 2023(06): 205-210 .
    8. 李旭,朱志强,冯颖韬,赵琥,温达洋,山永林,林黎明. 海洋钻井隔水管系统动力学行为研究. 钻采工艺. 2022(03): 31-36 .
    9. 张昊,雷雨辰,高云飞,张维维,闫启方,刘林超. 分数黏弹性可压缩油气井管杆准静态响应分析. 信阳师范学院学报(自然科学版). 2021(02): 331-338+344 .
    10. 李泉新,褚志伟,许超,杨冬冬. 煤矿井下双动力复合定向钻进轨迹调控研究. 工矿自动化. 2021(12): 25-31 .
    11. 王江帅,李军,柳贡慧,罗晓坤. 气侵条件下新型双梯度钻井环空出口流量变化规律研究. 石油钻探技术. 2020(04): 43-49 . 本站查看
    12. 张光伟,乔阳,田帆,高嗣土,尹福来. 全旋转内置式导向钻井工具动力学分析及仿真. 机械强度. 2020(06): 1417-1423 .
    13. 董学莲,杨芯萍,赵雄,张聪林,郑亮,费凌. 液缸式隔水管张紧系统建模及性能分析. 液压与气动. 2019(08): 39-48 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1273) PDF downloads (79) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return