XU Jianning, ZHENG Shunze, LI Zhongwen, XI Wenkui, WEI Yaming, YANG Xudong. Performance Analysis and Optimization of the Anchor Mechanism of Coupling Anchor Type Downhole Throttle[J]. Petroleum Drilling Techniques, 2018, 46(2): 103-108. DOI: 10.11911/syztjs.2018053
Citation: XU Jianning, ZHENG Shunze, LI Zhongwen, XI Wenkui, WEI Yaming, YANG Xudong. Performance Analysis and Optimization of the Anchor Mechanism of Coupling Anchor Type Downhole Throttle[J]. Petroleum Drilling Techniques, 2018, 46(2): 103-108. DOI: 10.11911/syztjs.2018053

Performance Analysis and Optimization of the Anchor Mechanism of Coupling Anchor Type Downhole Throttle

More Information
  • Received Date: November 28, 2017
  • The slip-type downhole throttle widely used now in Sulige Gas Field has the problems of complex releasing process and low retrieving success rate caused by slip seizing tubing in throttle retrieving.Therefore,a new type downhole throttle was developed,which is fixed on the gap of tubing coupling groove by means of claw anchor,with the characteristics of easy releasing,without clamping the tubing tightly,no slippage,and retrievable in one run of wireline operation.In order to improve the working performance of anchor mechanism of the new type downhole throttle,ANSYS finite element analysis software was used to establish the finite element models for anchor mechanism and tubing coupling,so as to simulate the working process of the anchoring mechanism during anchoring and retrieving.The central combination design method was used to establish the mathematical models for describing the effect of length and thickness of the jaw on the minimum retrieving force and the maximum stress on the jaw while jarring it downward.Through analysis of the effect regularity,the optimum length and thickness of the jaw were determined as 95.6 mm and 2.9 mm respectively.In this case,the better anchoring performance was obtained,the minimum retrieving force was 1.9 kN,and the maximum stress applied on the jaw during jarring downward was 732 MPa,significantly improved the performance compared with that of the original structure.The research results showed that the anchor mechanism of the new type downhole throttle was reasonable in design,and the jaw parameter combination of anchoring mechanism was optimized while ensuring the safe operation of anchor mechanism of throttle,which can provide technical support for the field application of this new downhole throttle in the future.
  • [1]
    王京舰,王一妃,管磊磊,等.神木气田产水气井井下节流参数优化设计[J].断块油气田,2017,24(1):101-104. WANG Jingjian,WANG Yifei,GUAN Leilei,et al.Optimal design of downhole throttling parameters for water produced gas well in Shenmu Gas Field[J].Fault-Block Oil Gas Field,2017,24(1):101-104.
    [2]
    宋中华,张士诚,王腾飞,等.塔里木油田高压气井井下节流防治水合物技术[J].石油钻探技术,2014,42(2):91-96. SONG Zhonghua,ZHANG Shicheng,WANG Tengfei,et al.Downhole throttling technology for gas hydrate prevention in deep gas wells of Tarim Oilfield[J].Petroleum Drilling Techniques,2014,42(2):91-96.
    [3]
    王锦昌.东胜气田井下节流参数优化方法及其应用[J].天然气勘探与开发,2017,40(2):50-55. WANG Jinchang.Downhole throttling parameter optimization method and its application in Dongsheng Gas Field[J].Natural Gas Exploration and Development,2017,40(2):50-55.
    [4]
    李荣峰.井下节流工艺在徐深气田的试验应用[J].天然气技术与经济,2012,6(1):45-47. LI Rongfeng.Application of downhole choke technology to Xushen Gasfield[J].Natural Gas Technology and Economy,2012,6(1):45-47.
    [5]
    张守良,马发明.天然气井下节流技术[M].北京:石油工业出版社,2015:85-98. ZHANG Shouliang,MA Faming.Natural gas downhole throttling technology[M].Beijing:Petroleum Industry Press,2015:85-98.
    [6]
    徐建宁,单勇,王维旭,等.石油钻采机械[M].青岛:中国石油大学出版社,2015:244-267. XU Jianning,SHAN Yong,WANG Weixu,et al.Oil drilling production machinery[M].Qingdao:China Petroleum University Press,2015:244-267.
    [7]
    谷成义,冯朋鑫,王晓荣,等.HY-4型节流器在苏里格气田的应用[J].石油钻采工艺,2010,32(4):120-122. GU Chengyi,FENG Pengxin,WANG Xiaorong,et al.Application of HY-4 down-hole choke in Sulige Gas Field[J].Oil Drilling Production Technology,2010,32(4):120-122.
    [8]
    胡丹,侯治民,滕汶江,等.新型活动式井下节流器的研制及应用[J].石油钻采工艺,2014,36(3):123-125. HU Dan,HOU Zhimin,TENG Wenjiang,et al.Development and application of a new mobile-type downholechoke[J].Oil Drilling Production Technology,2014,36(3):123-125.
    [9]
    许剑,赵哲军.川西气田井下节流推广技术瓶颈及解决方案[J].中外能源,2017,22(4):43-46. XU Jian,ZHAO Zhejun.Bottleneck and solutions of downhole throttling technology popularization in West Sichuan Gas Field[J].Sino-Global Energy,2017,22(4):43-46.
    [10]
    喻成刚,张华礼,邓友超.新型井下节流器研制及应用[J].钻采工艺,2008,31(4):91-93. YU Chenggang,ZHANG Huali,DENG Youchao.Development and application of new downholethrottle[J].Drilling Production Technology,2008,31(4):91-93.
    [11]
    蒋发光,梁政,李莲明,等.73 mm油管用井下节流器卡定系统研究[J].石油矿场机械,2010,39(11):49-52. JIANG Faguang,LIANG Zheng,LI Lianming,et al.Study of downhole choke’s slips system in 73 mm oil piple[J].Oil Drilling Production Technology,2010,39(11):49-52.
    [12]
    李韩博,杨明顺,李言,等.响应曲面法在SPIF表面粗糙度预测及多目标优化中的应用[J].机械科学与技术,2017,36(12):1896-1905. LI Hanbo,YANG Mingshun,LI yan,et al.Application of responses surface methodology in prediction and multi-objective optimization of surface roughness in SPIF[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(12):1896-1905.
    [13]
    刘东雷,申长雨,刘春太,等.基于响应曲面法与改进遗传算法的RHCM成型工艺优化[J].机械工程学报,2011,47(14):54-61. LIU Donglei,SHEN Changyu,LIU Chuntai,et al.Efficient process parameters optimization of rapid heat cycling molding technology based on response surface methodology and improved genetic algorithm[J].Journal of Mechanical Engineering,2011,47(14):54-61.
    [14]
    CAMPATELLI G,LORENZINI L,SCIPPA A.Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel[J].Journal of Cleaner Production,2014,66:309-316.
  • Related Articles

    [1]WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018
    [2]MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031
    [3]XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133
    [4]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [5]SUN Xiaofeng, ZHANG Kebo, YUAN Yujin, NI Xiaodong, CHEN Ye. The Establishment and Correction of a Prediction Model for the Repose Angle of a Cuttings Bed in Highly Deviated Well Interval[J]. Petroleum Drilling Techniques, 2019, 47(4): 22-28. DOI: 10.11911/syztjs.2019039
    [6]LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052
    [7]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [8]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [9]Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021
    [10]Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023
  • Cited by

    Periodical cited type(7)

    1. 魏康健,秦臻,苏可嘉,王港,黄易聪,张昕熠,孟令义. 裂缝储层水平井双感应测井响应特征分析与认识. 江西科学. 2024(02): 271-276 .
    2. 夏毅锐,苏洪波,王紫潇. 有限元分析在含锰金属蒙皮铆接结构疲劳断裂性能中的研究. 中国锰业. 2024(02): 79-83+95 .
    3. 秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 . 本站查看
    4. 胡斌. 瞬变电磁法在煤矿超前地质勘查中的应用. 能源与环保. 2024(06): 70-75 .
    5. 孟晋,刘得军,翟颖,李洋,刘思彤,彭娜. 基于电磁方法的水力压裂裂缝探测技术研究进展. 石油地球物理勘探. 2023(06): 1508-1521 .
    6. 王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 . 本站查看
    7. 吴世伟,刘得军,翟颖,李洋,王旭. 利用倾斜线圈探测水力裂缝的正演模拟. 地球物理学进展. 2022(06): 2449-2459 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return