Citation: | LIU Xing, QIU Jian, CHEN Zuo, et al. Calculation method for complex fracture network area of shale fracturing based on octree grid [J]. Petroleum Drilling Techniques, 2024, 52(6):117−125. DOI: 10.11911/syztjs.2024101 |
Deep shale gas is mainly developed by cutting fracturing technology. However, the fracturing effect evaluation method based on microseismic event monitoring for calculating stimulated reservoir volume (SRV) is only suitable for volume fracturing of shale gas wells in medium and deep formations, and it is not applicable for evaluating the tight cutting fracturing effectiveness of deep shale gas wells. Therefore, a model for estimating the area of complex fracture network based on the octree grid was established to evaluate the effectiveness of tight cutting fracturing in deep shale gas wells by estimating the complex fracture network area. This model decomposes microseismic events into octree grids and a three-dimensional complex fracture network area equivalent model based on the grid equivalent area method was constructed, by which the area of fracture network can be efficiently estimated without reconstructing the fracture network. In order to quantitatively evaluate the calculation error of this model, a set of synthetic microseismic event point generation methods based on the Gaussian mixture model was established. The simulation results show that this method has high calculation efficiency and estimation accuracy. Field application examples show that compared with the traditional SRV evaluation method, the method can more accurately evaluate the effectiveness of tight cutting fracturing in deep shale gas wells.
[1] |
陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060
CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060
|
[2] |
冯发勇,梁志彬,姚昌宇. 东胜气田锦 30 井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.
FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 well district, Dongsheng gas field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
|
[3] |
张矿生,薛小佳,陶亮,等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏,2023,30(5):127–134.
ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 127–134.
|
[4] |
慕立俊,拜杰,齐银,等. 庆城夹层型页岩油地质工程一体化压裂技术[J]. 石油钻探技术,2023,51(5):33–41.
MU Lijun, BAI Jie, QI Yin, et al. Geological engineering inte-grated fracturing technology for Qingcheng interlayer shale oil [J]. Petroleum Drilling Techniques, 2023, 51(5): 33–41.
|
[5] |
胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
|
[6] |
GAO Qian, GHASSEMI A. Finite element simulations of 3D planar hydraulic fracture propagation using a coupled hydro-mechanical interface element[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(15): 1999–2024. doi: 10.1002/nag.3116
|
[7] |
DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575–581. doi: 10.2118/124884-PA
|
[8] |
OLSON J E. Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands[R]. ARMA 08-327, 2008.
|
[9] |
ZHANG Fengshou, DAMJANAC B, MAXWELL S. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5137–5160. doi: 10.1007/s00603-019-01851-3
|
[10] |
ZHUANG Xiaoying, ZHOU Shuwei, SHENG Mao, et al. On the hydraulic fracturing in naturally-layered porous media using the phase field method[J]. Engineering Geology, 2020, 266: 105306. doi: 10.1016/j.enggeo.2019.105306
|
[11] |
FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping[R]. SPE 90051, 2004.
|
[12] |
HUGOT A, DULAC J C, GRINGARTEN E, et al. Connecting the dots: microseismic-derived connectivity for estimating volumes in low-permeability reservoirs[R]. URTEC 2153402, 2015.
|
[13] |
WU Yonghui, CHENG Linsong, KILLOUGH J, et al. Integrated characterization of the fracture network in fractured shale gas reservoir: stochastic fracture modeling, simulation and assisted history matching[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108886. doi: 10.1016/j.petrol.2021.108886
|
[14] |
ZHOU Zhiwei, SU Yuliang, WANG Wendong, et al. Integration of microseismic and well production data for fracture network calibration with an L-system and rate transient analysis[J]. Journal of Unconventional Oil and Gas Resources, 2016, 15: 113–121. doi: 10.1016/j.juogr.2016.07.001
|
[15] |
YU Xin, RUTLEDGE J, LEANEY S, et al. Integration of microseismic data and an unconventional fracture modeling tool to generate the hydraulically induced fracture network: a case study from the Cardium Formation, West Central Alberta, Canada[R]. URTEC 2154594, 2015.
|
[16] |
MCCLURE M W, BABAZADEH M, SHIOZAWA S, et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks[J]. SPE Journal, 2016, 21(4): 1302–1320. doi: 10.2118/173354-PA
|
[17] |
WENG X, KRESSE O, COHEN C, et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations, 2011, 26(4): 368–380.
|
[18] |
MEAGHER D. Geometric modeling using octree encoding[J]. Computer Graphics and Image Processing, 1982, 19(2): 129–147. doi: 10.1016/0146-664X(82)90104-6
|
[19] |
SAMET H. Foundations of multidimensional and metric data structures[M]. San Francisco: Morgan Kaufmann Publishers Inc. , 2006.
|
[20] |
PULLI K, DUCHAMP T, HOPPE H, et al. Robust meshes from multiple range maps[C]//Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No. 97TB100134). Piscataway, NJ: IEEE Press, 1997: 205-211.
|
[21] |
AYALA D, BRUNET P, JUAN R, et al. Object representation by means of nonminimal division quadtrees and octrees[J]. ACM Transactions on Graphics (TOG), 1985, 4(1): 41–59. doi: 10.1145/3973.3975
|
[22] |
FADAKAR ALGHALANDIS Y. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications[J]. Computers & Geosciences, 2017, 102: 1–11.
|
[23] |
LIU Xing, JIN Yan, LIN Botao, et al. An integrated 3D fracture network reconstruction method based on microseismic events[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104182. doi: 10.1016/j.jngse.2021.104182
|
[1] | QU Bowen, TAN Baohai, ZHANG Kai, CHEN Xuelian. Design of Excitation Circuit for Adaptive Acoustic Logging Transducer[J]. Petroleum Drilling Techniques, 2024, 52(6): 141-147. DOI: 10.11911/syztjs.2024077 |
[2] | FENG Xingen, FANG Junwei, FANG Yuyan, PAN Lijuan. Development and Performance Evaluation of a High Temperature-Resistant Isolation Membrane Retarded Acid Solution System[J]. Petroleum Drilling Techniques, 2023, 51(6): 99-105. DOI: 10.11911/syztjs.2023064 |
[3] | SUN Zhifeng, QIU Ao, JIN Ya, LI Jie, LUO Bo, PENG Kaixuan. Optimal Design and Experimental Study of the Receiver Sonde in Multipole Acoustic LWD Tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114-120. DOI: 10.11911/syztjs.2022089 |
[4] | LIU Yaowen, MING Yue, ZHANG Xudong, BIAN Xiaobing, ZHANG Chi, WANG Haitao. “Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2022, 50(3): 86-91. DOI: 10.11911/syztjs.2022010 |
[5] | WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141 |
[6] | LI Ling, WEI Junyi, ZHANG Qian. Development and Field Testing of a Gel Isolation Plug for Precise Managed Pressure Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 45-51. DOI: 10.11911/syztjs.2018150 |
[7] | ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020 |
[8] | WU Jinping, LU Huangsheng, ZHU Zuyang, ZHANG Wei. Experimental Study on the Simulation Prototype of Acoustic Nipples for Logging-While-Drilling (LWD)[J]. Petroleum Drilling Techniques, 2016, 44(2): 106-111. DOI: 10.11911/syztjs.201602018 |
[9] | Zhu Zuyang, Lu Huangsheng, Zhang Wei, Wu Haiyan, Wu Jinping. Development and Testing of Acoustic Nipples While Drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014 |
[10] | Xie Yuning, Zhou Xiaoyu. Quantitative Calculation and Correction of the Influence of Microannulus on Acoustic Amplitude Log[J]. Petroleum Drilling Techniques, 2013, 41(1): 45-50. DOI: 10.3969/j.issn.1001-0890.2013.01.009 |
1. |
李宁,刘鹏,范华军,胡江涛,武宏亮. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术. 2024(01): 1-7 .
![]() | |
2. |
朱日祥,金之钧,底青云,杨长春,陈文轩,田飞,张文秀. 智能导钻技术体系与相关理论研发进展. 地球物理学报. 2023(01): 1-15 .
![]() | |
3. |
苏义脑,窦修荣,高文凯,刘珂. 油气井随钻测量技术发展思考与展望. 石油科学通报. 2023(05): 535-554 .
![]() | |
4. |
刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 .
![]() | |
5. |
孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 .
![]() | |
6. |
朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验. 石油钻探技术. 2022(06): 35-40 .
![]() | |
7. |
孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 .
![]() |