ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020
Citation: ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020

The Effect of Collar Structure on Acoustic Logging Response While Drilling

More Information
  • Received Date: March 30, 2016
  • Revised Date: August 09, 2016
  • To acquire formation acoustic data effectively during acoustic logging while drilling, the finite difference method and slowness-time coherence method were used jointly to determine impacts of ID, OD, ID variation and external grooves on acoustic wave propagation. Simulation calculation results showed that no formation S-wave could be detected when the OD of the drill collar increased, or when the clearance between external wall of the drill collar and the borewall decreased. When ID of the drill collar decreased, no significant changes could be observed in amplitudes of the collar wave, S-wave and the Stoneley wave, but the amplitudes of the Stoneley wave increased dramatically with the thinning of wall thicknesses of the drill collar. The impact of ID changes of the drill collar on amplitudes may predominantly be determined by whether or not the acoustic source frequency is in collar stopband range. When a groove appeared on the outer wall of drill collars, the wave amplitude from the drill collar became smaller, thus the P-waves could be extracted from the acquired wave shapes. Research results showed that changes in IDs and OD of drill collars could affect the acceptance of S-wave and Stoneley wave. On the other hand, the shape of the internal and external walls of the drill collar (such as notch groove) may affect the wave amplitude of drill collar. The relationship between the structure of the drill collar and the responses of the LWD may provide a reliable foundation for the design of silencers in the LWD tools and for the interpretation of LWD data.
  • [1]
    唐晓明,郑传汉.定量测井声学[M].北京:石油工业出版社,2004:52-68. TANG Xiaoming,ZHENG Chuanhan.Quantitative borehole acoustic methods[M].Beijing:Petroleum Industry Press,2004:52-68.
    [2]
    王秀明,张海澜,何晓,等.声波测井中的物理问题[J].物理,2011,40(2):79-87. WANG Xiuming,ZHANG Hailan,HE Xiao,et al.Physical problems in acoustic logging[J].Physics,2011,40(2):79-87.
    [3]
    DEGRANGE J-M,HAWTHORN A,NAKAJIMA H,et al.Sonic while drilling:multipole acoustic tools for multiple answers[R].SPE 128162,2010.
    [4]
    TANG X M,WANG T,PATTERSON D.Multipole acoustic logging-while-drilling[R].SEG-2002-0364,2002.
    [5]
    LEGGETT J V III,DUBINSKY V,PATTERSON D,et al.Field test results demonstrating improved real-time data quality in an advanced LWD acoustic system[R].SPE 71732,2001.
    [6]
    MANNING M J,ANDONOF L J,QUINN T,et al.LWD acoustic log processing:petrophysics modeling improves interpretation of acoustic slowness[R].SPWLA-2009-22276,2009.
    [7]
    WANG T,TANG Xiaoming.Finite-difference modeling of elastic wave propagation:a nonsplitting perfectly matched layer approach[J].Geophysics,2003,68(5):1749-1755.
    [8]
    王华,陶果,王兵,等.多级子随钻声波测井波场模拟与采集模式分析[J].地球物理学报,2009,52(9):2402-2409. WANG Hua,TAO Guo,WANG Bing,et al.Wave field simulation and data acquisition scheme analysis for LWD acoustic tool[J].Chinese Journal of Geophysics,2009,52(9):2402-2409.
    [9]
    杨勇,车小花,李俊,等.基于时域有限差分法的随钻声波测井仪隔声体隔声效果的数值模拟[J].中国石油大学学报(自然科学版),2009,33(3):66-70. YANG Yong,CHE Xiaohua,LI Jun,et al.Sound isolation numerical simulation on isolator of logging while drilling sonic tool using finite difference time-domain in method[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(3):66-70.
    [10]
    闫向宏,苏远大,孙建孟,等.周期性轴对称凹槽结构隔声特性数值模拟[J].计算物理,2010,27(6):869-876. YAN Xianghong,SU Yuanda,SUN Jianmeng,et al.Acoustic characteristics of axisymmetric periodic groove structures[J].Chinese Journal of Computational Physics,2010,27(6):869-876.
    [11]
    苏远大,庄春喜,唐晓明.随钻声波测井钻铤模式波衰减规律研究与隔声体设计[J].地球物理学报,2011,54(9):2419-2428. SU Yuanda,ZHUANG Chunxi,TANG Xiaoming.LWD acoustic collar mode wave attenuation character research and isolator design[J].Chinese Journal of Geophysics,2011,54(9):2419-2428.
    [12]
    杨玉峰.随钻声波测井时域有限差分模拟与钻铤波传播特性研究[D].哈尔滨:哈尔滨工业大学,2014. YANG Yufeng.Studies on the finite-difference time-domain simulation of acoustic logging while drilling and the propagation characteristics of the collar wave[D].Harbin:Harbin Institute of Technology,2014.
    [13]
    朱留方,沈建国.从阵列声波测井波形处理地层纵、横波时差的新方法[J].地球物理学进展,2006,21(2):483-488. ZHU Liufang,SHEN Jianguo.The new method of processing the slowness of P and S wave from waveforms of array sonic logging[J].Progress in Geophysics,2006,21(2):483-488.
    [14]
    王军,韩庆邦.金属板中Lamb波波速与应力关系的实验研究[J].应用声学,2015,34(4):358-363. WANG Jun,HAN Qingbang.Experiment on relationship between Lamb wave velocity and static stress in metal plate[J].Journal of Applied Acoustics,2015,34(4):358-363.
    [15]
    中国石油大学(华东).一种在钻铤上变径隔声的随钻声波测井方法及装置:201110299591.3[P].2011-09-29. China University of Petroleum(Huadong).A device and method for LWD sonic logging of the drill collar adjustable:201110299591.3[P].2011-09-29.
  • Related Articles

    [1]QIN Wenjuan, KANG Zhengming, ZHANG Yi, WU Jie, NI Weining. Influence of Structure of Modular Electromagnetic Logging While Drilling Instrument on Measurement Signals[J]. Petroleum Drilling Techniques, 2024, 52(3): 137-145. DOI: 10.11911/syztjs.2023101
    [2]QU Hao, CHEN Feng, CHEN Jialei, ZHANG Hao, MING Chuanzhong, LI Jirong. Three-Dimensional Mechanical Characteristics of Drill Collar Joints under Downhole Equivalent Impact Torque in Extra-Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(2): 211-217. DOI: 10.11911/syztjs.2024044
    [3]KANG Zhengming, QIN Haojie, ZHANG Yi, LI Xin, NI Weining, LI Fengbo. Data Inversion of Azimuthal Electromagnetic Wave Logging While Drilling Based on LSTM Neural Network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116-124. DOI: 10.11911/syztjs.2023047
    [4]LIU Tianlin, YUE Xizhou, LI Guoyu, MA Mingxue, WANG Yiyi. Study over the Geo-Signal Properties of Ultra-Deep Electromagnetic Wave Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41-48. DOI: 10.11911/syztjs.2022110
    [5]WU Baizhi, YANG Zhen, GUO Tongzheng, YUAN Xiyong. Response Characteristics of Logging While Drilling System with Multi-Scale Azimuthal Electromagnetic Waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7-13. DOI: 10.11911/syztjs.2022107
    [6]XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133
    [7]HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
    [8]YANG Zhen, WEN Yi, XIAO Hongbing. A New Method of Detecting while Drilling Resistivity Anisotropy with Azimuthal Electromagnetic Wave Tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115-120. DOI: 10.11911/syztjs.201603021
    [9]Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
    [10]Yu Fu, Jin Yan, Chen Mian, Niu Chengcheng, Li Xiaoyi. Analysis of Response Characteristic of P-Wave Velocity in Abnormal Over-Pressure Formation[J]. Petroleum Drilling Techniques, 2014, 42(2): 23-27. DOI: 10.3969/j.issn.1001-0890.2014.02.005

Catalog

    Article Metrics

    Article views (6505) PDF downloads (10551) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return