Citation: | LI Fuqiang, SONG Zhaohui, YI Ming, et al. Calculation of optimal distance between electrode and probe in relief well magnetic ranging [J]. Petroleum Drilling Techniques, 2024, 52(3):34-39. DOI: 10.11911/syztjs.2024008 |
Ranging accuracy is a key factor affecting the successful connection between relief wells and accident wells. In order to improve the measurement accuracy of the active magnetic ranging system based on injected current, the electric field distribution in each medium was analyzed, and the current density distribution model of the accident well casing was established. By analyzing the current density distribution law of accident well casing, the calculation model of the optimal distance between the electrode and the probe based on the principle of the maximum magnetic induction intensity at the measuring point was established and the effectiveness of the model was verified by comparison test results. Calculations with examples show that the optimal distance between the electrode and the probe is related to not only the distance between the electrode and the accident well but also the relative well inclination angle. In addition, it has nothing to do with the injected current intensity. The distance between the peak point of the casing current density of the accident well and the coordinate point of the accident well is approximately equal to that between the electrode and the probe in the accident well. The optimal distance between the electrode and the probe is approximately equal to the product of the distance between the electrode and the accident well and the cosecant of the relative inclination angle. According to the calculation results of the optimal distance, a reasonable design of the distance between the electrode and the probe can contribute to the improvement measurement accuracy of the active magnetic ranging system based on injected current.
[1] |
FLORES V, DAILEY P, TODD D, et al. Relief well planning[R]. SPE 168029, 2014.
|
[2] |
车阳,乔磊,王建国,等. X 井精准治理技术研究与应用[J]. 断块油气田,2023,30(2):347–352.
CHE Yang, QIAO Lei, WANG Jianguo, et al. Research and application of precise treatment technology for well X[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 347–352.
|
[3] |
刁斌斌,高德利,唐海雄,等. 救援井与事故井邻井距离探测技术[C]//第十六届全国探矿工程(岩土钻掘工程)技术学术交流年会论文集. 北京:地质出版社,2011:201-205.
DIAO Binbin, GAO Deli, TANG Haixiong, et al. The distance detection technology between rescue wells and accident wells [C]//Proceedings of the 16th National Academic Exchange Conference on Exploration Engineering (Rock and Soil Drilling Engineering) Technology. Beijing: Geological Publishing House, 2011: 201-205.
|
[4] |
WOLFF C J M, DE WARDT J P. Borehole position uncertainty-analysis of measuring methods and derivation of systematic error model[J]. Journal of Petroleum Technology, 1981, 33(12): 2338–2350. doi: 10.2118/9223-PA
|
[5] |
WILLIAMSON H S. Accuracy prediction for directional measurement while drilling[J]. SPE Drilling & Completion, 2000, 15(4): 221–233.
|
[6] |
TORKILDSEN T, HÅVARDSTEIN S T, WESTON J, et al. Prediction of wellbore position accuracy when surveyed with gyroscopic tools[J]. SPE Drilling & Completion, 2008, 23(1): 5–12.
|
[7] |
DIAO Binbin, GAO Deli. Study on a ranging system based on dual solenoid assemblies, for determining the relative position of two adjacent wells[J]. Computer Modeling in Engineering & Sciences, 2013, 90(1): 77–90.
|
[8] |
KUCKES A F, HAY R T, MCMAHON J, et al. New electromagnetic surveying/ranging method for drilling parallel horizontal twin wells[J]. SPE Drilling & Completion, 1996, 11(2): 85–90.
|
[9] |
高德利,刁斌斌. 复杂结构井磁导向钻井技术进展[J]. 石油钻探技术,2016,44(5):1–9.
GAO Deli, DIAO Binbin. Development of the magnetic guidance drilling technique in complex well engineering[J]. Petroleum Drilling Techniques, 2016, 44(5): 1–9.
|
[10] |
李翠,高德利,刘庆龙,等. 邻井随钻电磁测距防碰计算方法研究[J]. 石油钻探技术,2016,44(5):52–59.
LI Cui, GAO Deli, LIU Qinglong, et al. A method of calculating of avoiding collisions with adjacent wells using electromagnetic ranging surveying while drilling tools[J]. Petroleum Drilling Technique, 2016, 44(5): 52–59.
|
[11] |
WEST C L, KUCKES A F, RITCH H J. Successful ELREC logging for casing proximity in an offshore Louisiana blowout[R]. SPE 11996, 1983.
|
[12] |
KUCKES A F, LAUTZENHISER T, NEKUT A G, et al. An electromagnetic survey method for directionally drilling a relief well into a blown out oil or gas well[J]. SPE Journal, 1984, 24(3): 269–274.
|
[13] |
李翠,高丽萍,李佳,等. 邻井随钻电磁测距防碰工具模拟试验研究[J]. 石油钻探技术,2017,45(6):110–115.
LI Cui, GAO Liping, LI Jia, et al. Experiment research on an electromagnetic anti-collision detection tool while drilling adjacent wells[J]. Petroleum Drilling Techniques, 2017, 45(6): 110–115.
|
[14] |
DIAO Binbin, GAO Deli, LI Genkui. Development of static magnetic detection anti-collision system while drilling[C]//Proceedings of the 2016 International Conference on Artificial Intelligence and Engineering Applications. Amsterdam: Atlantis Press, 2016: 543-551.
|
[15] |
WU Zhiyong, GAO Deli, DIAO Binbin. An investigation of electromagnetic anti-collision real-time measurement for drilling cluster wells[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 346–355. doi: 10.1016/j.jngse.2015.02.016
|
[16] |
刁斌斌,高德利. 邻井定向分离系数计算方法[J]. 石油钻探技术,2012,40(1):22–27. doi: 10.3969/j.issn.1001-0890.2012.01.005
DIAO Binbin, GAO Deli. Calculation method of adjacent well oriented separation factors[J]. Petroleum Drilling Techniques, 2012, 40(1): 22–27. doi: 10.3969/j.issn.1001-0890.2012.01.005
|
[17] |
DOU Xinyu, LIANG Huaqing, LIU Yang. Anticollision method of active magnetic guidance ranging for cluster wells[J]. Mathematical Problems in Engineering, 2018, 2018: 7583425.
|
[18] |
INGRAM S R, LAHMAN M, PERSAC S. Methods improve stimulation efficiency of perforation clusters in completions[J]. Journal of Petroleum Technology, 2014, 66(4): 32–36. doi: 10.2118/0414-0032-JPT
|
[19] |
李翠,高德利. 救援井与事故井连通探测方法初步研究[J]. 石油钻探技术,2013,41(3):56–61.
LI Cui, GAO Deli. Preliminary research on detection method for connecting relief well to blowout well[J]. Petroleum Drilling Techniques, 2013, 41(3): 56–61.
|
[20] |
LI Cui, GAO Deli, WU Zhiyong, et al. A method for the detection of the distance & orientation of the relief well to a blowout well in offshore drilling[J]. Computer Modeling in Engineering and Sciences, 2012, 89(1): 39–56.
|
[21] |
ZHANG Sen, DIAO Binbin, GAO Deli. A new method of anti-collision while drilling based on radial gradient measurement[R]. ARMA-2019-0114, 2019.
|
[22] |
ZHANG Sen, DIAO Binbin, GAO Deli. Numerical simulation and sensitivity analysis of accurate ranging of adjacent wells while drilling[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107536. doi: 10.1016/j.petrol.2020.107536
|
1. |
孙虎,郭阳,张媛,喻建胜,陈思锦. 智能化钻井完井技术研究与工程实践. 钻采工艺. 2025(01): 46-54 .
![]() | |
2. |
杨传书,王敏生,李昌盛,张洪宝,吴建军,付宣,袁多. 中国石化钻井工程决策支持系统进展及展望. 钻采工艺. 2025(01): 55-62 .
![]() | |
3. |
李胜忠. 贝叶斯网络在钻井设备系统故障诊断中的应用. 兵工自动化. 2025(05): 85-89 .
![]() | |
4. |
聂臻,夏朝辉,吴波鸿,黄雪琴. 中东地区碳酸盐岩油藏钻井工程技术现状及发展趋势. 石油钻探技术. 2024(01): 8-16 .
![]() | |
5. |
孙伟峰,冯剑寒,张德志,李威桦,刘凯,戴永寿. 结合LSTM自编码器与集成学习的井漏智能识别方法. 石油钻探技术. 2024(03): 61-67 .
![]() | |
6. |
王贺强,郭海涛,马翠岩,王子毓,陈友军,李斌,梁毅. 智能钻井系统在赵东油田的应用. 世界石油工业. 2024(03): 59-67 .
![]() | |
7. |
刘明,许鹏,陈述,夏林,边建杰,张华. 四川盆地致密气水平井钻井关键技术. 非常规油气. 2024(04): 152-159 .
![]() | |
8. |
杜松涛,杨晓峰,刘克强. 人工智能技术在钻井工程的应用与发展. 石油化工应用. 2024(06): 1-5+10 .
![]() | |
9. |
卢聪,罗扬,郭建春,曾凡辉. 融合物理约束的压裂水平井产能智能预测框架构建与应用. 天然气工业. 2024(09): 99-107 .
![]() | |
10. |
裴学良,黄哲. 胜利工程智能钻井关键技术探索与建议. 石油钻探技术. 2024(05): 62-68 .
![]() | |
11. |
王建龙,王越支,邱卫红,于琛,张菲菲,王学迎. 基于大数据与融合模型的钻井智能辅助决策系统. 石油钻探技术. 2024(05): 105-116 .
![]() | |
12. |
曾义金,王敏生,光新军,王果,张洪宝,陈曾伟,段继男. 中国石化智能钻井技术进展与展望. 石油钻探技术. 2024(05): 1-9+171 .
![]() | |
13. |
景明,王增祥. 数字孪生技术在实物地质资料工作中的应用场景探索. 中国矿业. 2024(S2): 145-148 .
![]() | |
14. |
赵汩凡,李婧,光新军,马广军. 基于专利的钻井参数优化技术发展态势分析. 石油化工应用. 2024(12): 1-7 .
![]() | |
15. |
付长民,王啸天,底青云. 智能导向钻井一体化软件系统平台研发. 地球物理学报. 2023(01): 139-152 .
![]() | |
16. |
朱日祥,金之钧,底青云,杨长春,陈文轩,田飞,张文秀. 智能导钻技术体系与相关理论研发进展. 地球物理学报. 2023(01): 1-15 .
![]() | |
17. |
廖璐璐,李根生,宋先知,冯连勇,高启超,程世忠. 我国脱碳路径与油公司能源转型策略研究. 石油钻探技术. 2023(01): 115-122 .
![]() | |
18. |
汝渴. 面向全智能石油钻机发展路径探讨. 化工管理. 2023(12): 136-139 .
![]() | |
19. |
孙伟峰,刘凯,张德志,李威桦,徐黎明,戴永寿. 结合钻井工况与Bi-GRU的溢流与井漏监测方法. 石油钻探技术. 2023(03): 37-44 .
![]() | |
20. |
张好林,杨传书,李昌盛,王果,段继男. 钻井数字孪生系统设计与研发实践. 石油钻探技术. 2023(03): 58-65 .
![]() | |
21. |
李昌华,张学龄,杜小芸,郭志阳. 基于卷积神经网络的井漏预测. 实验室研究与探索. 2023(05): 102-106+142 .
![]() | |
22. |
李根生,宋先知,祝兆鹏,田守嶒,盛茂. 智能钻完井技术研究进展与前景展望. 石油钻探技术. 2023(04): 35-47 .
![]() | |
23. |
李华洋,邓金根,谭强,冯永存,董保宏,曹志鹏,严科. 智能钻井技术应用体系构建及研究进展. 现代化工. 2023(10): 41-45+51 .
![]() | |
24. |
郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 .
![]() | |
25. |
孙金声,刘凡,程荣超,冯杰,郝惠军,王韧,白英睿,刘钦政. 机器学习在防漏堵漏中研究进展与展望. 石油学报. 2022(01): 91-100 .
![]() | |
26. |
薛亮,戴城,韩江峡,杨明瑾,刘月田. 油藏渗流物理和数据联合驱动的深度神经网络模型. 油气地质与采收率. 2022(01): 145-151 .
![]() | |
27. |
李中. 中国海油油气井工程数字化和智能化新进展与展望. 石油钻探技术. 2022(02): 1-8 .
![]() | |
28. |
陶宇龙. 智能钻井技术研究现状及发展趋势探究. 石油化工建设. 2022(02): 151-153 .
![]() | |
29. |
杨传书. 数字孪生技术在钻井领域的应用探索. 石油钻探技术. 2022(03): 10-16 .
![]() | |
30. |
蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 .
![]() | |
31. |
蒋海军,耿黎东,王晓慧,光新军. 国外石油工程碳减排技术与作业管理发展现状及启示. 石油钻探技术. 2022(05): 125-134 .
![]() | |
32. |
陈应显,周萌. 基于智能岩性识别的炮孔装药量计算. 爆破. 2022(04): 92-99 .
![]() |