KANG Zhengming, KE Shizhen, LI Xin, NI Weining, LI Fei. Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087
Citation: KANG Zhengming, KE Shizhen, LI Xin, NI Weining, LI Fei. Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087

Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool

More Information
  • Received Date: December 26, 2019
  • Revised Date: June 13, 2020
  • Available Online: June 23, 2020
  • Resistivity imaging LWD tool can not only visually display the characteristics of micro geological bodies through borehole wall electric imaging, but also can identify the formation interface. In order to explore the logging response mechanism of the tool at the interface, this paper studies the logging response law of the azimuthal resistivity imaging LWD tool at formation interface by using the three-dimensional finite element method. In doing so, it established a quantitative calculation model of formation interface parameters according to the simulation results. The results showed that the resistivity measurement difference of different azimuthal button electrodes of the tool exhibited a good power exponent relationship with the distance from tool to the formation interface in horizontal wells. The angle between the tool and formation interface and the maximum distance between resistivity curve spikes of different azimuthal button electrodes was power exponentially in deviated wells, which is not affected by resistivity contrast of the upper and lower strata at the formation interface. The model for the formation interface parameters interpretation indicated that the tool can be recognized within 1.00 m to the horizontal interface, and the angle can be calculated quantitatively when the angle between the tool and formation interface is less than 20 degrees. The research results can provide a theoretical basis for the application of a resistivity imaging LWD tool in geological engineering.

  • [1]
    路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027

    LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027
    [2]
    李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006

    LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
    [3]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [4]
    ALLOUCHE M, CHOW S, DUBOURG I, et al. High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R]. SPE 131513, 2010.
    [5]
    VAN OS R, DION D, CHEUNG P. Device and method of measuring depth and azimuth: US7873475[P]. 2009-01-18.
    [6]
    KOEPSELL R, SHIM Y H, KOK J C L, et al. Advanced LWD imaging technology in the Niobrara: case study[R]. SPE 143828, 2011.
    [7]
    ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3): 197–207.
    [8]
    LV Zonggang, PENG Hairun, XIA Qin, et al. Uncovering the potential of thin, tight gas reservoirs in Sichuan Basin, China: new development campaign using new LWD imaging technology and innovative interpretation workflows[R]. SPE 160173, 2012.
    [9]
    PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool: field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1): 49–66.
    [10]
    KUMAR R, OTAIBI S F, MUMTAZ A, et al. Effective geosteering using high-resolution electrical images and deep azimuthal resistivity[R]. SPE 172179, 2014.
    [11]
    FULDA C, HARTMANN A, GOREK M. High resolution electrical imaging while drilling[R]. SPWLA-2010-46830, 2010.
    [12]
    RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.
    [13]
    康正明, 柯式镇, 李新, 等. 钻头电阻率测井仪器探测特性研究[J]. 石油科学通报, 2017, 2(4): 457–465.

    KANG Zhengming, KE Shizhen, LI Xin, et al. The detection characteristics study of the at-bit resistivity logging tool[J]. Petroleum Science Bulletin, 2017, 2(4): 457–465.
    [14]
    KANG Zhengming, KE Shizhen, LI Xin, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. Applied Geophysics, 2018, 15(3/4): 401–412.
    [15]
    倪卫宁, 康正明, 路保平, 等. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005

    NI Weining, KANG Zhengming, LU Baoping, et al. The detection characteristics of a high resolution resistivity imaging instrument while drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005
    [16]
    李铭宇, 柯式镇, 康正明, 等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
    [17]
    JING Jiankun, KANG Zhengming, KE Shizhen, et al. The imaging resolution effect of LWD resistivity imaging tool using numerical simulation method[R]. EAGE-We_P09_12, 2019.
    [18]
    ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771[P]. 1967-02-21.
    [19]
    GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
    [20]
    刘国胜,杨海东,汤健超. 复杂地质层中电磁波测井响应特性的数值研究[J]. 中南大学学报(自然科学版), 2013, 44(2): 656–661.

    LIU Guosheng, YANG Haidong, TANG Jianchao. Numerical investigation for responses of electrical logging-while-drilling in complex formations[J]. Journal of Central South University (Natural Science Edition), 2013, 44(2): 656–661.
    [21]
    CHEN Jiefu. An efficient discontinuous Galerkin finite element method with nested domain decomposition for simulations of microresistivity imaging[J]. Journal of Applied Geophysics, 2015, 114: 116–122. doi: 10.1016/j.jappgeo.2015.01.006
  • Cited by

    Periodical cited type(29)

    1. 乔润伟,张士诚,李凤霞,王飞,李宁. 复兴地区高含黏土页岩凝析气藏渗吸排驱及液体渗流特征研究. 石油钻探技术. 2024(01): 96-106 . 本站查看
    2. 蒲春生,康少飞,蒲景阳,谷潇雨,高振东,王永东,王凯. 中国致密油藏水平井注水吞吐技术进展与发展趋势. 石油学报. 2023(01): 188-206 .
    3. 陈鑫. 引入孔喉比的致密砂岩储层相对渗透率计算方法. 辽宁化工. 2022(01): 104-107 .
    4. 刘建坤,蒋廷学,黄静,吴春方,贾文峰,陈晨. 纳米材料改善压裂液性能及驱油机理研究. 石油钻探技术. 2022(01): 103-111 . 本站查看
    5. 岳文成,范鹏,王凯,赵辉,刘安,杨红. 裂缝性低渗油藏复合体系协同驱油适应性研究. 日用化学工业. 2022(03): 245-252 .
    6. 谢贵琪,蒲永霞,万有余,刘世铎,冯昕媛. 柴达木盆地英西E_3~2油藏压裂水平井注水吞吐工艺探索及应用. 石油工业技术监督. 2022(11): 64-69 .
    7. 唐凡,朱永刚,张彦明,孟伟,张涛,徐春梅. CO_2注入对储层多孔介质及赋存流体性质影响实验研究. 石油与天然气化工. 2021(01): 72-76+82 .
    8. 欧阳伟平,张冕,孙虎,张云逸,池晓明. 页岩油水平井压裂渗吸驱油数值模拟研究. 石油钻探技术. 2021(04): 143-149 . 本站查看
    9. 李侠清,张星,卢占国,宋菲,宋志东,冯震,张磊. 低渗透油藏渗吸采油主控因素. 油气地质与采收率. 2021(05): 137-142 .
    10. 许锋,姚约东,吴承美,许章,张金风,赵国翔. 温度对吉木萨尔致密油藏渗吸效率的影响研究. 石油钻探技术. 2020(05): 100-104 . 本站查看
    11. 范学君. 大庆徐深气田致密气藏间歇开井增产机理. 油气井测试. 2020(05): 14-20 .
    12. 赵习森,杨红,陈龙龙,吴波,康宇龙,江绍静,汪杰,汤瑞佳,王宏. 延长油田化子坪油区长6油层CO_2驱油与封存潜力分析. 西安石油大学学报(自然科学版). 2019(01): 62-68 .
    13. 杨旭,李皋,孟英峰,刘林. 低渗透气藏水锁损害定量评价模型. 石油钻探技术. 2019(01): 101-106 . 本站查看
    14. 谢晓永,黄敏. 基于等效毛细管的低渗透气藏液相侵入模型. 石油钻探技术. 2019(01): 107-111 . 本站查看
    15. 樊建明,王冲,屈雪峰,成良丙,薛婷. 鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例. 石油学报. 2019(06): 706-715 .
    16. 孟也,李相方,何敏侠,蒋明洁. 气泡卡断过程中的喉道液领形态与聚并模型. 断块油气田. 2019(05): 632-637 .
    17. 顾雅頔,喻高明,李桂姗. 低渗致密砂岩储层孔隙结构特征及自发渗吸实验. 科学技术与工程. 2019(32): 139-145 .
    18. 刘盼,魏燕,胡昌义,蔡宏中,李旭铭,潘新东. 压力和温度对铱铑合金热等静压致密化的影响. 贵金属. 2019(S1): 11-15 .
    19. 周义博,刘卫东,郑晓波,孙灵辉,丛苏男,李杰瑞,陈思智,杜春泽. 低渗透油藏渗吸机理及研究状况综述. 应用化工. 2018(04): 825-829 .
    20. 周德胜,师煜涵,李鸣,张争,刘顺. 基于核磁共振实验研究致密砂岩渗吸特征. 西安石油大学学报(自然科学版). 2018(02): 51-57 .
    21. 赵建斌,万金彬,罗安银,程道解,李慧莹. 储层品质评价中的核磁共振研究. 西南石油大学学报(自然科学版). 2018(01): 89-96 .
    22. 贾梦阳. 饱和蒸气压对矿物孔隙结构影响的研究. 世界有色金属. 2018(13): 271-273 .
    23. 许林,张巍,梁小龙,肖瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析. 南京大学学报(自然科学). 2018(06): 1105-1113 .
    24. 李帅,丁云宏,吕焕军,张彬,余芳,石善志. 一维两相同向渗吸模型的求解方法. 断块油气田. 2017(01): 56-59 .
    25. 苏煜彬,林冠宇,韩悦. 表面活性剂对致密砂岩储层自发渗吸驱油的影响. 断块油气田. 2017(05): 691-694 .
    26. 熊健,刘向君,梁利喜. 甲烷在页岩黏土矿物孔中的赋存力学机制. 断块油气田. 2017(04): 500-505 .
    27. 徐中一,程林松,曹仁义,方思冬,吴九柱,庄永涛,艾爽. 基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算. 地球科学. 2017(08): 1431-1440 .
    28. 李伟峰,刘云,于小龙,魏浩光. 致密油储层岩石孔喉比与渗透率、孔隙度的关系. 石油钻采工艺. 2017(02): 125-129 .
    29. 徐新丽. 东风港油田特低渗透油藏微观孔隙结构及渗流特征试验研究. 石油钻探技术. 2017(02): 96-100 . 本站查看

    Other cited types(31)

Catalog

    Article Metrics

    Article views (845) PDF downloads (94) Cited by(60)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return