YANG Chuanshu. Exploration for the Application of Digital Twin Technology in Drilling Engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10-16. DOI: 10.11911/syztjs.2022068
Citation: YANG Chuanshu. Exploration for the Application of Digital Twin Technology in Drilling Engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10-16. DOI: 10.11911/syztjs.2022068

Exploration for the Application of Digital Twin Technology in Drilling Engineering

More Information
  • Received Date: March 21, 2021
  • Revised Date: April 24, 2022
  • Available Online: May 06, 2022
  • Based on a brief introduction to the origin of digital twin technology and the research status of its applications in drilling engineering in the petroleum industry, some key technologies were advanced, including the development of digital twin of the wellbore, digital twin of the geological environment, digital twins of drilling rigs, the simulation of downhole dynamic processes, and the real-time interaction technology of physical-digital twins, etc. Then, six application scenarios were designed for the digital twin technology: namely pre-drilling prediction and optimization by simulation, rehearsal of teamwork for complex well drilling, early warning and decision-making while drilling, remote drilling control, predictive maintenance of drilling equipment, and drilling training. Further, the major research and development focuses were proposed regarding the digital twin system for drilling. Finally, the research and development difficulties of digital twin technology applied in drilling were analyzed together with corresponding countermeasures. The research results provide a technical reference for speeding up the practical applications of digital twin technology in drilling engineering and promoting the digital and intelligent transformation of drilling engineering.

  • [1]
    CEARLEY D W, BURKE B, SEARLE S, et al. Gartner top 10 strategic technology trends for 2018[EB/OL]. (2017−10−03) [2020−02−05].https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018.
    [2]
    GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems (excerpt)[EB/OL]. [2020−01−29].https://www.researchgate.net/publication/307509727.
    [3]
    GRIEVES M W. Virtually intelligent product systems: digital and physical twins[M]//FLUMERFELT S, SCHWARTZ K G, MAVRIS D, et al. Complex systems engineering: theory and practice. Reston: American Institute of Aeronautics and Astronautics, 2019: 175−200.
    [4]
    MIKE SHAFTO C, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap: technology area 11[R]. New York: NASA, 2010.
    [5]
    DEUTER A, PETHIG F. The digital twin theory-a new view on a buzzword[EB/OL].(2019−03−18)[2020−02−05].https://www.researchgate.net/publication/330883447.
    [6]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [7]
    柳海啸,刘芳,代文星,等. 基于大数据分析技术的钻井提效实践[J]. 石油钻采工艺,2021,43(4):436–441.

    LIU Haixiao, LIU Fang, DAI Wenxing, et al. Drilling efficiency improvement practice based on big data analysis technology[J]. Oil Drilling & Production Technology, 2021, 43(4): 436–441.
    [8]
    耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78. doi: 10.11911/syztjs.2020134

    GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78. doi: 10.11911/syztjs.2020134
    [9]
    杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
    [10]
    OKHUIJSEN B, WADE K. Real-time production optimization-applying a digital twin model to optimize the entire upstream value chain[R]. SPE 197693, 2019.
    [11]
    NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
    [12]
    CAYEUX E, DAIREAUX B, DVERGSNES E W, et al. An early warning system for identifying drilling problems: an example from a problematic drill-out cement operation in the north-sea[R]. SPE 150942, 2012.
    [13]
    Halliburton. Applying the O&G digital twin[R]. 2018: 1−3.
    [14]
    Halliburton. Using an E&P digital twin in well construction[R]. 2017: 1−10.
    [15]
    李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8. doi: 10.11911/syztjs.2021133

    LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8. doi: 10.11911/syztjs.2021133
    [16]
    Energistics. WITSML developers & users[EB/OL]. [2020−02− 05]. https://www.energistics.org/witsml-developers-users/.
    [17]
    檀朝东,黄新春,王松,等. 机理仿真与数据驱动融合的电泵举升故障诊断预警理论研究进展[J]. 石油钻采工艺,2021,43(4):483–488.

    TAN Chaodong, HUANG Xinchun, WANG Song, et al. Research progress on fault diagnosis and early warning theory of electric submersible pump lifting based on mechanism simulation and data driven fusion[J]. Oil Drilling & Production Technology, 2021, 43(4): 483–488.
    [18]
    黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.

    HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
    [19]
    王茜,张菲菲,李紫璇,等. 基于钻井模型与人工智能相耦合的实时智能钻井监测技术[J]. 石油钻采工艺,2020,42(1):6–15.

    WANG Xi, ZHANG Feifei, LI Zixuan, et al. Real-time intelligent drilling monitoring technique based on the coupling of drilling model and artificial intelligence[J]. Oil Drilling & Production Technology, 2020, 42(1): 6–15.
    [20]
    朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428–435.

    ZHU Shuo, SONG Xianzhi, LI Gensheng, et al. Intelligent real-time drag and torque analysis and sticking trend prediction of drill string[J]. Oil Drilling & Production Technology, 2021, 43(4): 428–435.
    [21]
    谭天一,张辉,马丹妮,等. 虑数据不平衡影响的钻井复杂智能诊断方法[J]. 石油钻采工艺,2021,43(4):449–454.

    TAN Tianyi, ZHANG Hui, MA Danni, et al. An intelligent drilling accident diagnosis method considering the influence of data imbalance[J]. Oil Drilling & Production Technology, 2021, 43(4): 449–454.
  • Cited by

    Periodical cited type(14)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 .
    2. 刘豇瑜,任登峰,秦世勇,张键,晏楠,刘洋. 塔里木盆地富满油田超深缝洞型碳酸盐岩储层立体酸压技术. 大庆石油地质与开发. 2025(03): 77-84 .
    3. 李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 .
    4. 柳志翔,邹伟,王冲,徐迎春. 新型超高温高压井裸眼封隔器研制与应用. 工程机械. 2024(04): 23-29+8 .
    5. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    6. 杨敏,鲍典,焦保雷,张娟,罗发强,罗攀登. 塔里木盆地顺北油气田少井高产地质工程一体化做法与关键技术. 中国石油勘探. 2024(03): 45-57 .
    7. 刘永辉,吴宁,罗程程,周陈程,李楠,彭振华,代星,方正魁. 高气液比油井井筒压降实验及理论模型研究. 断块油气田. 2024(05): 893-899 .
    8. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 .
    9. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    10. 唐雨. HIMA高温胶凝酸体系研制及现场应用. 江汉石油职工大学学报. 2023(01): 14-16+20 .
    11. 戴一凡,侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析. 断块油气田. 2023(04): 672-677 .
    12. 李长海,赵伦,朱强,李云海,马彩琴,李晓胜,杨坤,张丽英. 酸压技术研究现状及发展趋势. 油气地质与采收率. 2023(06): 138-149 .
    13. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
    14. 郭玉洁,徐创伟,张江江,李芳,孟晓宇,谢思黔. 聚全氟乙丙烯耐高温非金属内衬油管的服役工况适应性. 工程塑料应用. 2022(11): 133-138 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return