Citation: | ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094 |
In light of the energy dissipation principle, the mechanism of wellbore instability in a tight sandstone formation during gas drilling was studied through triaxial compression tests. The results of triaxial compression tests were analyzed, and it was found that the energy evolution process of sandstone includes three stages, i.e., the stable accumulation of elastic energy, the slow accumulation of dissipated energy, and elastic energy release with rapid accumulation of dissipated energy. With the decrease in confining pressure, the limit of dissipated energy required to destroy sandstone structure decreased exponentially, while that of the stored elastic energy declined linearly. As the loading rate was enhanced, the dissipated energy required to destroy the sandstone structure first decreased and then increased, with the appearance of a critical loading rate. The conversion rate of dissipated energy of sandstone was positively correlated with confining pressure and loading rate, and a high conversion rate caused the weakening of cohesion and the strengthening of friction. Too fast gas drilling enlarged the wellbore instability area, this was more distinct when drilling high-pressure formations. Therefore, appropriately reducing the drilling speed while giving sufficient pressure relief time to formations is conducive to maintaining wellbore stability during gas drilling. The research results are of great significance for optimizing gas drilling speed.
[1] |
李皋,孟英峰,唐洪明,等. 气体钻井高效开发致密砂岩气藏[J]. 天然气工业,2007,27(7):59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017
LI Gao, MENG Yingfeng, TANG Hongming, et al. Gas drilling used for efficient development of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2007, 27(7): 59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017
|
[2] |
李皋,孟英峰,蒋俊,等. 气体钻井的适应性评价技术[J]. 天然气工业,2009,29(3):57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016
LI Gao, MENG Yingfeng, JIANG Jun, et al. Evaluation techniques on the adaptability of gas drilling[J]. Natural Gas Industry, 2009, 29(3): 57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016
|
[3] |
刘向君,丁乙,罗平亚,等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术,2018,46(1):10–16. doi: 10.11911/syztjs.2018005
LIU Xiangjun, DING Yi, LUO Pingya, et al. The impact of drilling unloading on wellbore stability of shale formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10–16. doi: 10.11911/syztjs.2018005
|
[4] |
吴超,陈勉,金衍. 井壁稳定性实时预测方法[J]. 石油勘探与开发,2008,35(1):80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014
WU Chao, CHEN Mian, JIN Yan. Real-time prediction method of borehole stability[J]. Petroleum Exploration and Development, 2008, 35(1): 80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014
|
[5] |
DING Yi, LUO Pingya, LIU Xiangjun, et al. Wellbore stability model for horizontal wells in shale formations with multiple planes of weakness[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 334–347. doi: 10.1016/j.jngse.2018.01.029
|
[6] |
邓金根, 郭东旭, 周建良, 等. 泥页岩井壁应力的力学–化学耦合计算模式及数值求解方法[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2250−2253.
DENG Jingen, GUO Dongxu, ZHOU Jianliang, et al. Mechanics-chemistry coupling calculation model of borehole stress in shale formation and its numerical solving method[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(supplement1): 2250− 2253.
|
[7] |
LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Wellbore stability analysis for horizontal wells in shale formations[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 1–8. doi: 10.1016/j.jngse.2016.02.061
|
[8] |
卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
|
[9] |
张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256–260.
ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 256–260.
|
[10] |
邓媛,何世明,邓祥华,等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术,2020,48(1):26–33. doi: 10.11911/syztjs.2020010
DENG Yuan, HE Shiming, DENG Xianghua, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26–33. doi: 10.11911/syztjs.2020010
|
[11] |
闫睿昶,张宇,吴红玲,等. 巴彦河套盆地临河区块深层井壁失稳钻井液对策[J]. 石油钻采工艺,2022,44(2):168–172.
YAN Ruichang, ZHANG YU, WU Hongling, et al. Drilling fluid solutions to well instability in deep layers of Linhe Block of the Bayan Hetao Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 168–172.
|
[12] |
陈修平,高雷雨,刘景涛,等. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液,2021,38(1):35–41.
CHEN Xiuping, GAO Leiyu, LIU Jingtao, et al. echanisms of borehole wall destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and measures dealing with the borehole wall collapse[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 35–41.
|
[13] |
石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023,51(1):22–33. doi: 10.11911/syztjs.2023005
SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field [J]. Petroleum Drilling Techniques, 2023, 51(1): 22–33. doi: 10.11911/syztjs.2023005
|
[14] |
潘冠昌,杨斌,张浩,等. 超深层碳酸盐岩裂缝面形态与摩擦因数研究[J]. 断块油气田,2022,29(6):794–799.
PAN Guanchang,YANG Bin,ZHANG Hao,et al. Research on fracture surface morphology and friction coefficient of ultra-deep carbonate rock[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 794–799.
|
[15] |
兰凯,熊友明,闫光庆,等. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. 吉林大学学报(地球科学版),2011,41(4):1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031
LAN Kai, XIONG Youming, YAN Guangqing, et al. Horizontal borehole stability and its influence on well completion optimization in the northeast Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031
|
[16] |
刘向君,罗平亚,孟英峰. 地应力场对井眼轨迹设计及稳定性的影响研究[J]. 天然气工业,2004,24(9):57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017
LIU Xiangjun, LUO Pingya, MENG Yingfeng. Influence of ground stress field on borehole trajectory design and well face stability[J]. Natural Gas Industry, 2004, 24(9): 57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017
|
[17] |
EWY R T. Wellbore-stability predictions by use of a modified lade criterion[J]. SPE Drilling & Completion, 1999, 14(2): 85–91.
|
[18] |
梁利喜,丁乙,刘向君,等. 硬脆性泥页岩井壁稳定渗流–力化耦合研究[J]. 特种油气藏,2016,23(2):140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034
LIANG Lixi, DING Yi, LIU Xiangjun, et al. Seepage-mechanochemistry coupling of wellbore stability in hard-brittle shale[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034
|
[19] |
FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 209–220.
|
[20] |
邓华锋, 王晨玺杰, 李建林, 等. 加载速率对砂岩抗拉强度的影响机制[J]. 岩土力学, 2018, 39(增刊1): 79−88.
DENG Huafeng, WANG Chenxijie, LI Jianlin, et al. Influence mechanism of loading rate on tensile strength of sandstone[J]. Rock and Soil Mechanics, 2018, 39(supplement 1): 79−88.
|
[21] |
吴绵拔. 加载速率对岩石抗压和抗拉强度的影响[J]. 岩土工程学报,1982,4(2):97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010
WU Mianba. The effect of loading rate on the compressive and tensile strength of rocks[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010
|
[22] |
尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2610−2615.
YIN Xiaotao, GE Xiurun, LI Chunguang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 2610−2615.
|
[23] |
谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[24] |
马振乾,姜耀东,李彦伟,等. 加载速率和围压对煤能量演化影响试验研究[J]. 岩土工程学报,2016,38(11):2114–2121. doi: 10.11779/CJGE201611023
MA Zhenqian, JIANG Yaodong, LI Yanwei, et al. Experimental research on influence of loading rate and confining pressure on energy evolution of coal[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2114–2121. doi: 10.11779/CJGE201611023
|
[25] |
张志镇,高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报,2015,34(1):1–11. doi: 10.13722/j.cnki.jrme.2015.01.001
ZHANG Zhizhen, GAO Feng. Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1–11. doi: 10.13722/j.cnki.jrme.2015.01.001
|
[26] |
张黎明,高速,王在泉. 加卸荷条件下灰岩能耗变化规律试验研究[J]. 岩土力学,2013,34(11):3071–3076. doi: 10.16285/j.rsm.2013.11.004
ZHANG Liming, GAO Su, WANG Zaiquan. Experimental study of energy evolution of limestone under loading and unloading conditions[J]. Rock and Soil Mechanics, 2013, 34(11): 3071–3076. doi: 10.16285/j.rsm.2013.11.004
|
[27] |
陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报,2009,28(8):1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
CHEN Weizhong, LYU Senpeng, GUO Xiaohong, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
|
[28] |
徐小丽,陈琳,高峰,等. 花岗岩的加载速率效应及能量机制研究[J]. 固体力学学报,2015,36(2):154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008
XU Xiaoli, CHEN Lin, GAO Feng, et al. Studies on loading rate effects and energy mechanism of granite[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008
|
[29] |
姜耀东,李海涛,赵毅鑫,等. 加载速率对能量积聚与耗散的影响[J]. 中国矿业大学学报,2014,43(3):369–373. doi: 10.13247/j.cnki.jcumt.000121
JIANG Yaodong, LI Haitao, ZHAO Yixin, et al. Effect of loading rate on energy accumulation and dissipation in rocks[J]. Journal of China University of Mining & Technology, 2014, 43(3): 369–373. doi: 10.13247/j.cnki.jcumt.000121
|
[30] |
苏国韶,冯夏庭. 基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J]. 岩石力学与工程学报,2005,24(17):3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005
SU Guoshao, FENG Xiating. Parameter identification of constitutive model for hard rock under high in-situ stress condition using particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005
|
[31] |
HAJIABDOLMAJID V, KAISER P K, MARTIN C D. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 731–741. doi: 10.1016/S1365-1609(02)00051-5
|
[32] |
DIEDERICHS M S. The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep unneling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082–1116. doi: 10.1139/T07-033
|
[33] |
EDELBRO C. Numerical modelling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 398–409. doi: 10.1016/j.tust.2008.11.004
|
[34] |
马天寿,陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术,2014,42(5):26–36. doi: 10.11911/syztjs.201405005
MA Tianshou, CHEN Ping. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26–36. doi: 10.11911/syztjs.201405005
|
[35] |
李留伟,吴建军,龙学,等. 川西新场构造地应力分布规律研究及其应用[J]. 天然气工业,2008,28(9):80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025
LI Liuwei, WU Jianjun, LONG Xue, et al. Research on the distribution laws of tectonic in-site stress in Xinchang structure (West Sichuan Basin) and their applications[J]. Natural Gas Industry, 2008, 28(9): 80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025
|
[36] |
刘厚彬,韩旭,张俊,等. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术,2019,47(1):25–31. doi: 10.11911/syztjs.2019004
LIU Houbin, HAN Xu, ZHANG Jun, et al. Wellbore stability evaluation during gas drilling through low permeability gas reservoirs in western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25–31. doi: 10.11911/syztjs.2019004
|
1. |
郭远智,康玉柱,程飞飞,杨博,王珍. 胡尖山油田C2层储层特征及有利区预测. 断块油气田. 2025(01): 47-54 .
![]() | |
2. |
杜宇斌,刘子帅,吕斌,赵维超,周崇峰,樊荣华. 抗高温固井用悬浮稳定型降失水剂的制备与应用. 钻井液与完井液. 2025(01): 102-109 .
![]() | |
3. |
汪翰林,李皋,李红涛,王浩. 砂泥岩组合体冲击动力学及破坏特征实验研究. 钻采工艺. 2025(02): 41-49 .
![]() | |
4. |
简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 .
![]() | |
5. |
周文迪,庞敏,贺文卿,周汉国,张涛. 胜利西部探区哈山地区组合钻井技术研究及应用. 油气地质与采收率. 2024(02): 167-174 .
![]() | |
6. |
张文,梁利喜,刘向君,熊健,张忆南. 酸作用下碳酸盐岩刻蚀形貌及力学性能研究. 油气藏评价与开发. 2024(02): 247-255 .
![]() | |
7. |
陈芳,马平平,杨立军,刘文超. 温西超低压储气库钻完井工程技术优化. 石油钻采工艺. 2023(02): 167-172 .
![]() |