NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049
Citation: NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049

Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe

More Information
  • Received Date: October 27, 2020
  • Revised Date: April 01, 2021
  • Available Online: May 07, 2021
  • Improper drilling schemes may cause engineering problems such as wellbore collapse and wellhead subsidence during the drilling of permafrost. The research on mechanical evolution of deep frozen soil paves the way for construction design. In this paper, soil samples at different depths were remolded with the frozen soil from Mohe, and triaxial mechanical tests were carried out under different confining pressures and temperatures to analyze the characteristics of stress–strain curves of frozen soil under different conditions. The strength of frozen soil was statistically studied by multiple regression analysis, and the strength criterion for it was further established. The research results showed that the stress–strain curves of the frozen soil samples presented nonlinear deformation behavior on the whole. In its frozen state, soil strength was controlled mainly by temperature and confining pressure while it was dominated by confining pressure and soil depth in its non-frozen state. In addition, frozen soil strength was composed of the strength of soil skeleton and the cementing strength of ice in pores. The strength of soil skeleton satisfies the Mohr-Coulomb criteria, and the cohesion and internal friction angle increases with soil depth. The cementing strength of ice in pores grows with the decline of ambient temperature, and increases and then decreases as the confining pressure increases. On this basis, the strength criterion for Mohe frozen soil was established, and the verification results proved that it can well characterize the strength distribution of Mohe frozen soil in the melt and frozen state.
  • [1]
    肖东辉,马巍,赵淑萍,等. 冻土动力学参数研究的成果综述与展望[J]. 冰川冻土,2015,37(6):1611–1626.

    XIAO Donghui, MA Wei, ZHAO Shuping, et al. Study of the dynamic parameters of frozen soil: achievements and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1611–1626.
    [2]
    苏文德,周建军. 厦门地区含盐地层冻土力学性能试验研究[J]. 隧道建设,2016,36(1):27–31. doi: 10.3973/j.issn.1672-741X.2016.01.004

    SU Wende, ZHOU Jianjun. Experimental study on mechanical properties of salt-bearing frozen soil in Xiamen, China[J]. Tunnel Construction, 2016, 36(1): 27–31. doi: 10.3973/j.issn.1672-741X.2016.01.004
    [3]
    王海新,吴亚平,孙安元,等. 循环荷载下冻土桩基力学特性研究[J]. 铁道科学与工程学报,2017,14(10):2111–2117. doi: 10.3969/j.issn.1672-7029.2017.10.011

    WANG Haixin, WU Yaping, SUN Anyuan, et al. Mechanical properties research about frozen soil pile foundation under cyclic loading[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2111–2117. doi: 10.3969/j.issn.1672-7029.2017.10.011
    [4]
    栗晓林,王红坚,邹少军,等. 振动荷载作用下冻结砂土强度及破坏特性试验研究[J]. 振动工程学报,2018,31(6):1068–1075.

    LI Xiaolin, WANG Hongjian, ZOU Shaojun, et al. The strength and failure properties of frozen sand under vibrating load[J]. Journal of Vibration Engineering, 2018, 31(6): 1068–1075.
    [5]
    路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015.

    LU Guilin. Experimental study on mechanical properties for warm frozen soils in permafrost regions[D]. Xuzhou: China University of Mining and Technology, 2015.
    [6]
    张德华,王梦恕,任少强. 青藏铁路多年冻土隧道围岩季节活动层温度及响应的试验研究[J]. 岩石力学与工程学报,2007,26(3):614–619. doi: 10.3321/j.issn:1000-6915.2007.03.025

    ZHANG Dehua, WANG Mengshu, REN Shaoqiang. Experimental study on temperature and response of seasonal active layer of tunnel’s surrounding rock in permafrost region on Qinghai-Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 614–619. doi: 10.3321/j.issn:1000-6915.2007.03.025
    [7]
    杨旭,严松宏,马丽娜. 季节性冻土区隧道温度场分析与预测[J]. 隧道建设,2012,32(1):57–60.

    YANG Xu, YAN Songhong, MA Lina. Analysis on and prediction of temperature field of tunnels located in seasonal frozen area[J]. Tunnel Construction, 2012, 32(1): 57–60.
    [8]
    王铁行,胡长顺,王秉纲,等. 考虑多种因素的冻土路基温度场有限元方法[J]. 中国公路学报,2000,13(4):8–11. doi: 10.3321/j.issn:1001-7372.2000.04.002

    WANG Tiexing, HU Changshun, WANG Binggang, et al. A finite element method for thermal field analysis of frozen soil subgrade on the consideration of all field-factors[J]. China Journal of Highway and Transport, 2000, 13(4): 8–11. doi: 10.3321/j.issn:1001-7372.2000.04.002
    [9]
    马巍,刘端,吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学,2008,29(3):571–579. doi: 10.3969/j.issn.1000-7598.2008.03.001

    MA Wei, LIU Duan, WU Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571–579. doi: 10.3969/j.issn.1000-7598.2008.03.001
    [10]
    吴玉林.青藏铁路多年冻土地区房屋体系研究[J].冰川冻土, 2003, 25(增刊1): 108–111.

    WU Yulin. Study of building system in permafrost regions along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2003, 25(supplement 1): 108–111.
    [11]
    袁伟.冻结砂土三轴抗压强度和变形机理研究[D].兰州: 兰州大学, 2020.

    YUAN Wei. Triaxial compressive strength and deformation mechanism of frozen sand[D]. Lanzhou: Lanzhou University, 2020.
    [12]
    马冬冬,马芹永,袁璞,等. 主动围压状态人工冻结砂土SHPB试验与分析[J]. 岩土力学,2017,38(10):2957–2961, 2972.

    MA Dongdong, MA Qinyong, YUAN Pu, et al. SHPB tests on artificial frozen sand and its analysis under active confining pressure[J]. Rock and Soil Mechanics, 2017, 38(10): 2957–2961, 2972.
    [13]
    常小晓,马巍,王大雁. 高围压下冻结粘土的抗压强度试验研究[J]. 冰川冻土,2007,29(4):636–639. doi: 10.3969/j.issn.1000-0240.2007.04.018

    CHANG Xiaoxiao, MA Wei, WANG Dayan. Study on the strength of frozen clay at high confining pressure[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 636–639. doi: 10.3969/j.issn.1000-0240.2007.04.018
    [14]
    黄星,李东庆,明锋,等. 冻结粉质黏土声学特性与物理力学性质试验研究[J]. 岩石力学与工程学报,2015,34(7):1489–1496.

    HUANG Xing, LI Dongqing, MING Feng, et al. Experimental study on acoustic characteristics and physico-mechanical properties of frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1489–1496.
    [15]
    黄星,李东庆,明锋,等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土,2016,38(5):1346–1352.

    HUANG Xing, LI Dongqing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346–1352.
    [16]
    袁伟,姚晓亮,王文丽. 基于离散元的冻结砂土三轴力学特性研究[J]. 冰川冻土,2019,41(6):1388–1396.

    YUAN Wei, YAO Xiaoliang, WANG Wenli. Study on triaxial mechanical behaviors of frozen sand based on discrete element method[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1388–1396.
    [17]
    白瑞强,徐湘田,华树广,等. 基于多元线性回归模型的冻土强度影响因素显著性分析[J]. 冰川冻土,2019,41(2):416–423.

    BAI Ruiqiang, XU Xiangtian, HUA Shuguang, et al. Significant analysis of the influence factors on strength of frozen soil base on multivariable linear regression model[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 416–423.
  • Cited by

    Periodical cited type(1)

    1. 祁生金. 裂缝延伸方向对水平井主压裂缝内支撑剂运移规律的影响. 特种油气藏. 2025(01): 167-174 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (401) PDF downloads (62) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return