DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059
Citation: DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059

Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool

More Information
  • Received Date: November 03, 2020
  • Revised Date: July 05, 2021
  • Available Online: August 23, 2021
  • To improve the borehole trajectory control effect and operation safety of rotary steerable tools, the analysis of the lateral vibration characteristics of rotary steerable bottom hole assembly (RSBHA) was conducted. A static push-the-bit rotary steerable tool can control borehole trajectories through its driving force produced from its three pads, and thus it can be regarded as an eccentric stabilizer with known eccentricity and eccentric azimuth. In this work, a three-dimensional statics model of RSBHA with small deflection was constructed to determine the spatial configuration of RSBHA under the weight on bit and the constraints of borehole wall by the weighted residual method, and thus to obtain the upper tangential point. Then, a finite element model was built, taking the distance between the upper tangential point and the bit as the effective length for lateral vibration. The lateral vibration responses of RSBHA could be elicited using the mode superposition method, and analysis of the influence of working and structural parameters on its lateral vibration could be made. The calculation results showed that when the rotary speed was around 138 r/min, the dynamic displacement of RSBHA was greater in the distances of 8.20 m, 18.10 m, 24.60 m, and 31.60 m away from the bit. The weight on bit had little impact on the maximum bending stress of RSBHA, while the eccentricity and eccentric azimuth had a greater impact on the lateral vibration characteristics, and the maximum bending stress would obviously increase for certain eccentricity and eccentric azimuth. The research shows that working and structural parameters have great influence on the lateral vibration of RSBHA, which should be optimized to ensure the proper application and operation safety of rotary steerable tools.
  • [1]
    王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺,2018,41(2):37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11

    WANG Zhirui, WANG Junliang. Development of rotary steering technology in foreign countries and its status quo in China[J]. Drilling & Production Technology, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11
    [2]
    郑锋辉,韩来聚,杨利,等. 国内外新兴钻井技术发展现状[J]. 石油钻探技术,2008,36(4):5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002

    ZHENG Fenghui, HAN Laiju, YANG Li, et al. Development of novel drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002
    [3]
    狄勤丰. 旋转导向井下闭环钻井技术[M]. 西安: 陕西科学技术出版社, 1999.

    DI Qinfeng. Rotary closed-loop drilling technology[M]. Xi’an: Shaanxi Science & Technology Press, 1999.
    [4]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [5]
    狄勤丰,赵业荣. 导向钻具组合动力学方程建立及传递函数求解[J]. 石油学报,2000,21(4):87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016

    DI Qinfeng, ZHAO Yerong. The establishing of dynamics equations and the transfer functions of the steering assembly of the downhole closed-loop drilling system[J]. Acta Petrolei Sinica, 2000, 21(4): 87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016
    [6]
    李军,李东春,张辉,等. 推靠式旋转导向工具造斜能力影响因素[J]. 石油钻采工艺,2019,41(4):460–466.

    LI Jun, LI Dongchun, ZHANG Hui, et al. The influencing factors of the inclination ability of push-the-bit rotary guiding tool[J]. Oil Drilling & Production Technology, 2019, 41(4): 460–466.
    [7]
    刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2018,46(6):59–64.

    LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.
    [8]
    徐天文,杨峰,赵建国. AutoTrack旋转导向工具现场应用分析[J]. 西部探矿工程,2016,28(6):11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004

    XU Tianwen, YANG Feng, ZHAO Jianguo. Analysis on the field application of AutoTrack rotary steering tool[J]. West-China Exploration Engineering, 2016, 28(6): 11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004
    [9]
    史玉才,滕志想,白璟,等. 改进的静态推靠式旋转导向钻具组合力学模型[J]. 中国石油大学学报(自然科学版),2018,42(5):75–80.

    SHI Yucai, TENG Zhixiang, BAI Jing, et al. Improved mechanical model of the static push-the-bit rotary steerable bottom-hole assembly[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 75–80.
    [10]
    王明杰,狄勤丰,王文昌,等. 柔性短节对RSBHA导向力特征的影响分析[J]. 钻采工艺,2012,35(1):52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16

    WANG Mingjie, DI Qinfeng, WANG Wenchang, et al. Affection of flex sub's position and length on the steering force of RSBHA[J]. Drilling & Production Technology, 2012, 35(1): 52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16
    [11]
    王恒,管志川,史玉才,等. 柔性短节对推靠式旋转导向底部钻具组合造斜能力的影响分析[J]. 钻采工艺,2018,41(6):19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Effects of flex sub on build-up performance of push-the-bit RSBHA[J]. Drilling & Production Technology, 2018, 41(6): 19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06
    [12]
    彭勇,闫文辉,李继博. 旋转导向钻井工具导向力优化设计[J]. 石油钻探技术,2006,34(2):10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003

    PENG Yong, YAN Wenhui, LI Jibo. The optimal design of the steering force for the rotary steerable drilling Tool[J]. Petroleum Drilling Techniques, 2006, 34(2): 10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003
    [13]
    狄勤丰,王明杰,胡以宝,等. 柔性短节位置对带旋转导向工具底部钻具组合动力学特性的影响[J]. 中国石油大学学报(自然科学版),2012,36(5):84–88.

    DI Qinfeng, WANG Mingjie, HU Yibao, et al. Effect of flex sub's position on Bottom hole assembly with rotary steering tool[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 84–88.
    [14]
    BURGESS T M, MCDANIEL G L, DAS P K. Improving BHA tool reliability with drillstring vibration models: field experience and limitations[R]. SPE 16109, 1987.
    [15]
    DYKSTRA M W. Nonlinear drill string dynamics[D]. Tulsa: The University of Tulsa, 1996.
    [16]
    张鹤,狄勤丰,覃光煦,等. 预弯底部钻具组合横向振动响应的快速求解[J]. 石油学报,2017,38(12):1441–1447. doi: 10.7623/syxb201712012

    ZHANG He, DI Qinfeng, QIN Guangxu, et al. Quick solution method for lateral vibration response of Pre-bent bottom-hole assembly[J]. Acta Petrolei Sinica, 2017, 38(12): 1441–1447. doi: 10.7623/syxb201712012
    [17]
    李子丰. 油气井杆管柱力学及应用[M]. 北京: 石油工业出版社, 2008: 133–140.

    LI Zifeng. Tubular mechanics in oil-gas wells and its applications[M]. Beijing: Petroleum Industry Press, 2008: 133–140.
    [18]
    狄勤丰,周凤岐,赵业荣. 带可控偏心稳定器的下部钻具组合力学特性计算分析[J]. 石油钻采工艺,1999,21(4):7–11, 113.

    DI Qinfeng, ZHOU Fengqi, ZHAO Yerong. Analysis of mechanical features for low drill assembly with controllable eccentric stabilizer[J]. Oil Drilling & Production Technology, 1999, 21(4): 7–11, 113.
    [19]
    李茂生,闫相祯,高德利. 钻井液对钻柱横向振动固有频率的影响[J]. 石油大学学报(自然科学版),2004,28(6):68–71.

    LI Maosheng, YAN Xiangzhen, GAO Deli. Influence of drilling fluid on natural frequency of drill string lateral vibration[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2004, 28(6): 68–71.
    [20]
    KHULIEF Y A, Al-SULAIMAN F A, BASHMAL S. Vibration analysis of drillstrings with self-excited stick-slip oscillations[J]. Journal of Sound and Vibration, 2007, 299(3): 540–558. doi: 10.1016/j.jsv.2006.06.065
    [21]
    CAUGHEY T K, O'KELLY M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, 1965, 32(3): 583–588. doi: 10.1115/1.3627262
    [22]
    SPANOS P D, PAYNE M L. Advances in dynamic bottomhole assembly modeling and dynamic response determination[R]. SPE 23905, 1992.
  • Related Articles

    [1]ZENG Fanhui, HU Dagan, ZHANG Yu, GUO Jianchun, TIAN Fuchun, ZHENG Bintao. Research on Data-Driven Intelligent Optimization of Fracturing Treatment Parameters for Shale Oil Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 78-87. DOI: 10.11911/syztjs.2023087
    [2]GUO Jianchun, REN Wenxi, ZENG Fanhui, LUO Yang, LI Yulin, DU Xiaoyang. Unconventional Oil and Gas Well Fracturing Parameter Intelligent Optimization: Research Progress and Future Development Prospects[J]. Petroleum Drilling Techniques, 2023, 51(5): 1-7. DOI: 10.11911/syztjs.2023097
    [3]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [4]ZHAO Jin, ZHAO Xing, CAI Peng, PENG Qi, RAO Jiaqi. Development of Coiled Tubing Jet Tools with Multi-Hole Nozzles and Cleaning Parameter Optimization[J]. Petroleum Drilling Techniques, 2023, 51(3): 83-89. DOI: 10.11911/syztjs.2023061
    [5]CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005
    [6]CHEN Zhaowei, HUANG Rui, ZENG Bo, SONG Yi, ZHOU Xiaojin. Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 93-100. DOI: 10.11911/syztjs.2020108
    [7]ZHOU Chao, WU Xiaodong, ZHANG Tongyi, ZHAO Xu. Experimental Research for Parameter Optimization of the Vortex Tool for Drainage Gas Recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105-110. DOI: 10.11911/syztjs.2018142
    [8]Shi Yucai, Guan Zhichuan, Zhang Xin, Zhang Wenbin. Optimization Methods for Drilling Hydraulic Parameters When Using Positive Displacement Down-Hole Motor[J]. Petroleum Drilling Techniques, 2014, 42(2): 33-36. DOI: 10.3969/j.issn.1001-0890.2014.02.007
    [9]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
    [10]Chen Mian, Jin Yan. Shale Gas Fracturing Technology Parameters Optimization Based on Core Analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7-12. DOI: 10.3969/j.issn.1001-0890.2012.04.002
  • Cited by

    Periodical cited type(9)

    1. 孙峰. 静态推靠机械式垂钻工具的研制及试验. 石油机械. 2025(03): 32-37 .
    2. 罗敏,莫亚虎,李巧珍,徐亭亭,林志强. 超短半径水平井铰接式柔性钻具耦合振动特性研究. 应用数学和力学. 2025(03): 298-309 .
    3. 郭良林,夏成宇,吉俊杰,郭铨楹,车恒达,黄志强. 非连续性指向式旋转导向底部钻具组合力学影响因素分析. 科学技术与工程. 2025(12): 4967-4974 .
    4. 何俊杰,毛良杰,杨森,秦才会,赵清阳,魏祥高. 推靠式旋转导向系统钻具组合力学性能分析. 石油机械. 2024(04): 41-48 .
    5. 纪慧,李军,杨宏伟,柳贡慧,关立臣. 底部钻具组合力学性能分析及优化. 石油机械. 2024(06): 20-28 .
    6. 高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议. 石油钻探技术. 2024(02): 1-11 . 本站查看
    7. 郭金玉. 大庆CYG油田深层U型地热井钻完井关键技术. 采油工程. 2024(04): 73-78+88 .
    8. 孟庆威,姜天杰,刘泳敬,杨杰,王越支. 基于有限元分析的方位角误差计算和修正. 石油钻探技术. 2022(03): 66-73 . 本站查看
    9. 吉玲,王泽超,贾建波,张冠祺,李博. 旋转导向仪器井下振动测量及其标定. 现代制造技术与装备. 2022(11): 1-3 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (736) PDF downloads (166) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return