NIE Yunfei, ZHU Yuan, FAN Xiao, ZHAO Chuanwei, ZHANG Hui. Development and Application of Self-Excited Vortex Control Hydraulic Oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080
Citation: NIE Yunfei, ZHU Yuan, FAN Xiao, ZHAO Chuanwei, ZHANG Hui. Development and Application of Self-Excited Vortex Control Hydraulic Oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74-79. DOI: 10.11911/syztjs.2019080

Development and Application of Self-Excited Vortex Control Hydraulic Oscillator

More Information
  • Received Date: August 21, 2018
  • Revised Date: August 21, 2019
  • Available Online: August 30, 2019
  • An autonomous self-excited vortex control hydraulic oscillator has the advantage of having no degrading parts, a low manufacturing cost and small pressure drop, which can reduce the friction during drilling and thus reduce the possibility of getting stuck, thus optimizing WOB transmission and increasing the ROP. In order to solve the problem of high levels of friction during drilling of extended reach wells and long horizontal section horizontal wells, a self-excited vortex control hydraulic oscillator was developed, which consists of a steady-state jet element and a vortex variable liquid resistance zone. In principle, it mainly uses the Coanda effect of the jet and a specific flow path form to generate periodic vortex, so as to produce axial oscillations. By using a 2D numerical model, the flow state inside the self-excited vortex control hydraulic oscillator and the relationship between its performance parameters and the inlet flow rate were analyzed based the computational fluid dynamics method. The numerical simulation analysis shows that the main performance parameter of the oscillator, pressure pulsation amplitude, exhibits a square relationship with the inlet flow, and pressure pulsation frequency has a linear relationship with the inlet flow. Field applications show that the autonomous, self-triggering vortex control hydraulic oscillator can not only significantly improve the ROP, but also has no impact on MWD tools. It possesses the characteristics of simple structure, reliable function and excellent working performance.

  • [1]
    SAMUEL R. Friction factors: what are they for torque, drag, vibration, bottom hole assembly and transient surge/swab analyses?[J]. Journal of Petroleum Science and Engineering, 2010, 73(3/4): 258–266.
    [2]
    王鹏, 倪红坚, 王瑞和, 等. 调制式振动对大斜度井减摩阻影响规律[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013

    WANG Peng, NI Hongjian, WANG Ruihe, et al. Influence laws of modulated vibration on friction reduction in inclined-wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013
    [3]
    孔令镕,王瑜,邹俊,等. 水力振荡减阻钻进技术发展现状与展望[J]. 石油钻采工艺, 2019, 41(1): 23–30.

    KONG Lingrong, WANG Yu, ZOU Jun, et al. Development status and prospect of hydro-oscillation drag reduction drilling technology[J]. Oil Drilling & Production Technology, 2019, 41(1): 23–30.
    [4]
    余长柏,黎明,刘洋,等. 水力振荡器振动特性的影响因素[J]. 断块油气田, 2016, 23(6): 842–845.

    YU Changbai,LI Ming,LIU Yang,et al. Influence factors on vibration characteristics of hydraulic oscillator[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 842–845.
    [5]
    SOLA K I, LUND B. New downhole tool for coiled tubing extended reach[R].SPE 60701, 2000.
    [6]
    BARTON, S P, BAEZ F, ALALI A. Drilling performance improvements in gas shale plays using a novel drilling agitator device[R]. SPE 144416, 2011.
    [7]
    明瑞卿, 张时中, 王海涛, 等. 国内外水力振荡器的研究现状及展望[J]. 石油钻探技术, 2015, 43(5): 116–122.

    MING Ruiqing, ZHANG Shizhong, WANG Haitao, et al. Research status and prospect of hydraulic oscillator worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116–122.
    [8]
    于冰. 水力振荡冲击器设计及应用研究[D]. 大庆: 东北石油大学, 2017.

    YU Bing. Design and application of hydraulic oscillator impactor[D]. Daqing: Northeast Petroleum University, 2017.
    [9]
    肖占朋, 杨琳, 李忠飞. 水力振荡器在塔中地区水平井中的应用[J]. 天然气勘探与开发, 2017, 40(2): 91–94.

    XIAO Zhanpeng, YANG Lin, LI Zhongfei. Application of hydraulic oscillator to horizontal wells in Tazhong Area,the Tarim Basin[J]. Natural Gas Exploration and Development, 2017, 40(2): 91–94.
    [10]
    柳鹤,冯强,周俊然,等. 射流式水力振荡器振动频率分析与现场应用[J]. 石油机械, 2016, 44(1): 20–24.

    LIU He, FENG Qiang, ZHOU Junran, et al. Vibration frequency analysis of jetting hydraulic oscillator[J]. China Petroleum Machinery, 2016, 44(1): 20–24.
    [11]
    陈涛,冉照辉,罗亮,等. 苏77–21–40H2 水平井超长水平段钻井技术[J]. 石油钻采工艺, 2015, 37(6): 1–4.

    CHEN Tao, RAN Zhaohui, LUO Liang, et al. Drilling technology for ultra-long horizontal section of horizontal well Su 77-21-40H2[J]. Oil Drilling & Production Technology, 2015, 37(6): 1–4.
    [12]
    李典伟,杨忠福,邸百英,等. 伊拉克鲁迈拉油田S形定向井降摩减扭技术[J]. 石油钻探技术, 2016, 44(5): 22–27.

    LI Dianwei, YANG Zhongfu, DI Baiying, et al. Drag and torque reducing techniques on S-shaped directional wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22–27.
    [13]
    SCHULTZ R L, CONNELL M L, FERGUSON A M. Vortex controlled variable flow resistance device and related tools and methods: US 9212522[P]. 2011-05-18.
    [14]
    MCCARTHY J P, STANES B H, REBELLON J E, et al. A step change in drilling efficiency: quantifying the effects of adding an axial oscillation tool with in challenging wellbore environments[R]. SPE 119958, 2009.
    [15]
    吴志勇, 李军, 倪红坚, 等. 水力振荡器性能影响因素研究[J]. 石油机械, 2018, 46(3): 7–11.

    WU Zhiyong, LI Jun, NI Hongjian, et al. Research on the influencing factors of performance of hydraulic oscillator[J]. China Petroleum Machinery, 2018, 46(3): 7–11.
    [16]
    吕克华, 邹志钢. 影响水力振荡器工作性能因素分析[J]. 钻采工艺, 2018, 41(1): 78–80. doi: 10.3969/J.ISSN.1006-768X.2018.01.24

    LYU Kehua, ZOU Zhigang. Analysis on factors affecting working performance of hydraulic oscillator[J]. Drilling & Production Technology, 2018, 41(1): 78–80. doi: 10.3969/J.ISSN.1006-768X.2018.01.24
  • Related Articles

    [1]LI Zhong. Key Technologies and Field Applications of Intelligent Perception in Offshore Drilling and Completion[J]. Petroleum Drilling Techniques, 2024, 52(5): 20-25. DOI: 10.11911/syztjs.2024083
    [2]WANG Xigui, ZOU Deyong, YANG Liwen, GAO Wei, SUN Shaoliang, SU Yang. Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities[J]. Petroleum Drilling Techniques, 2021, 49(3): 94-99. DOI: 10.11911/syztjs.2021061
    [3]QIAN Xiaolin, XUAN Yang, LIN Yongxue, YANG Xiaohua. Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
    [4]DONG Linfang, CHEN Xinyang. Performance Evaluation and Field Application of a Self-Suspending Proppant[J]. Petroleum Drilling Techniques, 2018, 46(6): 90-94. DOI: 10.11911/syztjs.2018144
    [5]WANG Xiaojun. The Development and Application of Solid-Free Micro-Foam Drilling Fluid with Temperature Resistance and Salt Tolerance[J]. Petroleum Drilling Techniques, 2016, 44(2): 58-64. DOI: 10.11911/syztjs.201602010
    [6]LIANG Haiming, PEI Xueliang, ZHAO Bo. Coring Techniques in Shale Formations and Their Field Application[J]. Petroleum Drilling Techniques, 2016, 44(1): 39-43. DOI: 10.11911/syztjs.201601008
    [7]Xu Xin. Development and Application of Flow Control Screen Completion for Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(3): 71-75. DOI: 10.3969/j.issn.1001-0890.2014.03.014
    [8]Hu Jinjun, Sun Qiang, Xia Xiaochun, Wei Zilu, Ji Teng, Xiang Tao. Development and Application of Environment-Friendly Drilling Fluid GREEN-DRILL[J]. Petroleum Drilling Techniques, 2014, 42(2): 75-79. DOI: 10.3969/j.issn.1001-0890.2014.02.015
    [9]Zhang Hao, Zhang Bin, Xu Guojin. Applications of Zwitterionic Polymer HRH Drilling Fluid in Linpan Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 57-63. DOI: 10.3969/j.issn.1001-0890.2014.02.012
    [10]Sun Kunzhong, He Jibiao, Zeng Penghui, Shen Binliang, Gu Jun. Application of Mud Cake Curing Agent in Well Yuanye HF-1[J]. Petroleum Drilling Techniques, 2013, 41(5): 41-45. DOI: 10.3969/j.issn.1001-0890.2013.05.008
  • Cited by

    Periodical cited type(10)

    1. 栾凯伦,高斐,楼一珊,黄梦婷. 基于BP神经网络的井壁坍塌预测. 矿产勘查. 2025(02): 371-379 .
    2. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 .
    3. 王磊. 基于瞬态热流固耦合的钻井井壁稳定性分析. 断块油气田. 2023(02): 331-336 .
    4. 张文,刘向君,梁利喜,熊健. 致密砂岩地层气体钻井井眼稳定性试验研究. 石油钻探技术. 2023(02): 37-45 . 本站查看
    5. 王丽君. 苏里格气田苏53区块防塌钻井液技术研究. 辽宁化工. 2022(09): 1264-1266+1298 .
    6. 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议. 石油钻探技术. 2022(05): 1-8 . 本站查看
    7. 刘厚彬,崔帅,孟英峰,周彦行,罗益. 深层脆性页岩水平井井壁崩落失稳研究. 断块油气田. 2021(03): 323-328 .
    8. 邓媛,何世明,邓祥华,彭远春,何世云,汤明. 力化耦合作用下的层理性页岩气水平井井壁失稳研究. 石油钻探技术. 2020(01): 26-33 . 本站查看
    9. 张磊,许杰,刘海龙,谢涛,韩耀图. 层理性地层井壁坍塌失稳规律研究. 石油机械. 2019(02): 24-32 .
    10. 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验. 断块油气田. 2018(06): 803-806 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1115) PDF downloads (89) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return