DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
Citation: DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010

Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling

More Information
  • Received Date: May 08, 2018
  • Revised Date: December 09, 2019
  • Available Online: January 08, 2020
  • In view of the fact that most of the existing chemo-mechanical coupling analysis of the wellbore stability in shale gas horizontal wellsonly considered the influence of hydration on rock strength, but rarely considered the influence of hydration strain and stress, this paper, based on the theories of elasticity and rock mechanics, and by considering the weakening effect of hydration on rock mechanical parameters and the additional hydration stress, established the prediction model of wellbore collapse pressure of bedded shale gas horizontal wells under chemo-mechanical coupling, studied the mechanism of wellbore instability of bedded shale gas horizontal wells, and analyzed the factors affecting wellbore stability and their influencing laws. The results showed that when there was a bedding plane, the collapse pressure would increase greatly; the wellbore stability was the best when drilling along the bedding plane; when the hydration time was fixed, the collapse pressure would decrease with the increase of the radial distance from the wellbore, and the longer the hydration time was, the larger the area near the wellbore that was prone to collapse would be; and after considering the influence of the hydration stress, the collapse pressure increased greatly, sothe influence of hydration stress could not be ignored when designing the drilling fluid density. The research results enriched the wellbore instability theories of shale gas horizontal wells, and played a guiding role in the drilling design of bedded shale gas horizontal wells.

  • [1]
    陈安明,龙志平,周玉仓,等. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨[J]. 石油钻探技术, 2018, 46(6): 9–14.

    CHEN Anming, LONG Zhiping, ZHOU Yucang, et al. Discussion on low-cost drilling technologies of normal pressure shale gas in the outer margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9–14.
    [2]
    JAEGER J C, COOK N G W, ZIMMERMAN R. Fundamentals of rock mechanics[M]. Boston: Wiley-Blackwell, 2007.
    [3]
    刘向君,丁乙,罗平亚,等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术, 2018, 46(1): 10–16.

    LIU Xiangjun, DING Yi, LUO Pingya, et al. The impact of drilling unloading on wellbore stability of shale formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10–16.
    [4]
    梁利喜,刘向君,许强. 发育有切割井眼结构面的井壁稳定性评价研究[J]. 石油钻探技术, 2007, 35(3): 27–29. doi: 10.3969/j.issn.1001-0890.2007.03.008

    LIANG Lixi, LIU Xiangjun, XU Qiang. Study on evaluation of wellbore stability in wells with structural planes[J]. Petroleum Drilling Techniques, 2007, 35(3): 27–29. doi: 10.3969/j.issn.1001-0890.2007.03.008
    [5]
    刘向君,陈一健,肖勇. 岩石软弱面产状对井壁稳定性的影响[J]. 西南石油学院学报, 2001, 23(6): 12–13.

    LIU Xiangjun, CHEN Yijian, XIAO Yong. Effect of weak’ plane dip angle and dip azimuth angle on wellbore stability[J]. Journal of Southwest Petroleum Institute, 2001, 23(6): 12–13.
    [6]
    洪国斌,陈勉,卢运虎,等. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术, 2018, 46(3): 78–85.

    HONG Guobin, CHEN Mian, LU Yunhu, et al. Study on the anisotropy characteristics of deep shale in the Southern Sichuan Basin and their impact on fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78–85.
    [7]
    LIANG Chuan, CHEN Mian, JIN Yan, et al. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21(21): 364–378.
    [8]
    温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16
    [9]
    马天寿,陈平. 层理性页岩水平井井壁稳定性分析[J]. 中南大学学报(自然科学版), 2015, 46(4): 1375–1383. doi: 10.11817/j.issn.1672-7207.2015.04.027

    MA Tianshou, CHEN Ping. Analysis of wellbore stability for horizontal wells instratification shale[J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1375–1383. doi: 10.11817/j.issn.1672-7207.2015.04.027
    [10]
    马天寿,陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术, 2014, 42(5): 26–36.

    MA Tianshou, CHEN Ping. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26–36.
    [11]
    马天寿, 陈平. 页岩层理对水平井井壁稳定的影响[J]. 西南石油大学学报(自然科学版), 2014, 36(5): 97–104. doi: 10.11885/j.issn.1674-5086.2013.06.30.03

    MA Tianshou, CHEN Ping. Influence of shale bedding plane onwellbore stability for horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(5): 97–104. doi: 10.11885/j.issn.1674-5086.2013.06.30.03
    [12]
    覃园圆.泥页岩水化对井壁稳定性影响研究[D].西安: 西安石油大学, 2014.

    QIN Yuanyuan. Effects of hydraulic on shale formation wellbore stability[D]. Xi’an: Xi’an Shiyou University, 2014.
    [13]
    YEW C H, CHENEVERT M E, WANG C l, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA
    [14]
    黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 18–24.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of ellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 18–24.
  • Related Articles

    [1]LIU Tianen, ZHANG Haijun, YUAN Guangjie, LI Guotao, YIN Qiwu, CHEN Fei. Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127
    [2]SUN Jin, WU Shiguo, DENG Jingen, WANG Jiliang. Analysis of the Contributing Factors to Wellbore Collapse in Shallow Water Flow Formations for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 34-41. DOI: 10.11911/syztjs.2019032
    [3]DENG Fuyuan, HE Shiming, ZHAO Zhuanling, TANG Ming, LIU Sen. The Influence of Countercurrent Spontaneous Imbibition on the Collapse Pressure of Shale Oil Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 37-44. DOI: 10.11911/syztjs.2018138
    [4]LIU Xiangjun, DING Yi, LUO Pingya, LIANG Lixi. The Impact of Drilling Unloading on Wellbore Stability of Shale Formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10-16. DOI: 10.11911/syztjs.2018005
    [5]Cheng Wan, Jin Yan, Lu Yunhu. Wellbore Instability Mechanism of Deep Sidetracking Wells in Mudstone Strata[J]. Petroleum Drilling Techniques, 2014, 42(6): 53-58. DOI: 10.11911/syztjs.201406011
    [6]Ma Tianshou, Chen Ping. Prediction Method of Shear Instability Region around the Borehole for Horizontal Wells in Bedding Shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26-36. DOI: 10.11911/syztjs.201405005
    [7]Cheng Wan, Jin Yan, Chen Mian, Xu Tong, Chen Gang. A Method to Estimate Borehole Collapse Pressure Based on Shale Damage Law[J]. Petroleum Drilling Techniques, 2014, 42(2): 37-40. DOI: 10.3969/j.issn.1001-0890.2014.02.008
    [8]Han Zhiyong. Discussion on Effects of Internal and External Pressure on Axial Force and Stability of Pipe String in Oil Wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 12-18. DOI: 10.3969/j.issn.1001-0890.2013.06.003
    [9]Li Guangquan, Wang Yi, Chen Junhai, Chen Cengwei. Analysis of the Maximum Horizontal Principal Stress Based on Wellbore Collapse Information[J]. Petroleum Drilling Techniques, 2012, 40(1): 37-41. DOI: 10.3969/j.issn.1001-0890.2012.01.008
    [10]Calculation of Yield Collapse Pressures for Casing Through-Wall[J]. Petroleum Drilling Techniques, 2011, 39(1): 48-51. DOI: 10.3969/j.issn.1001-0890.2011.01.011
  • Cited by

    Periodical cited type(8)

    1. 孙巧雷,刘语维,夏乐,冯定,王鹏,张红. 波流载荷作用下的下入安装立管横向动态特性. 石油机械. 2023(06): 50-56+65 .
    2. 焦金刚,谢仁军,吴怡. 深水水下井口下沉时送入管柱纵向振动分析. 石油机械. 2021(12): 62-69 .
    3. 高德利,王宴滨. 海洋深水钻井力学与控制技术若干研究进展. 石油学报. 2019(S2): 102-115 .
    4. 管志川,李敬皎,韩超,张波,赵效锋,腾学清,孙宝江. 深水钻井送入管柱的载荷计算与强度分析. 中国石油大学学报(自然科学版). 2018(02): 71-78 .
    5. 刘康,朱敬宇,张慎颜,陈国明,张伟国. 深水送入管柱导向系统力学性能及影响因素分析. 中国海上油气. 2018(03): 137-143 .
    6. 阚长宾,杨进,周建良,刘书杰,张思敏,胡南丁,殷启帅. 深水低压井口下入工具结构设计与承载特性分析. 石油科学通报. 2017(02): 279-287 .
    7. 柯珂,张辉,周宇阳,王磊,冯士伦. 深水钻井喷射下导管模拟试验装置的研制. 石油钻探技术. 2015(02): 33-37 . 本站查看
    8. 陈江烨,王一良,侯庆春,杨松. 油井声控压差平衡式开关控制器的研制与试验. 石油钻探技术. 2015(04): 133-137 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1162) PDF downloads (119) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return