中国石化“深地工程”油气测试关键技术及展望

张锦宏, 张波, 曹明, 孙晨祥, 刘涛, 廖碧朝, 牟小清

张锦宏,张波,曹明,等. 中国石化“深地工程”油气测试关键技术及展望[J]. 石油钻探技术,2024, 52(2):48-57. DOI: 10.11911/syztjs.2024037
引用本文: 张锦宏,张波,曹明,等. 中国石化“深地工程”油气测试关键技术及展望[J]. 石油钻探技术,2024, 52(2):48-57. DOI: 10.11911/syztjs.2024037
ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. key technologies and prospects for oil and gas testing in Sinopec’s “Deep Underground Engineering” [J]. Petroleum Drilling Techniques,2024, 52(2):48-57. DOI: 10.11911/syztjs.2024037
Citation: ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. key technologies and prospects for oil and gas testing in Sinopec’s “Deep Underground Engineering” [J]. Petroleum Drilling Techniques,2024, 52(2):48-57. DOI: 10.11911/syztjs.2024037

中国石化“深地工程”油气测试关键技术及展望

基金项目: 中国石化科技攻关项目“元坝超深‘三高’气井APR三联作安全测试技术”(编号:P23182)和“超高压酸性气井试气关键技术研究”(编号:P22048)联合资助。
详细信息
    作者简介:

    张锦宏(1963—),男,江苏泰州人,1983年毕业于华东石油学院钻井工程专业,2004年获石油大学(北京)管理学硕士学位,正高级经济师,中国石化集团公司首席专家(石油工程领域高效钻井方向),主要从事石油工程技术研究及相关管理工作。系本刊编委。E-mail:zhangjh.os@sinopec.com

  • 中图分类号: TE27+2

Key Technologies and Prospects for Oil and Gas Testing in Sinopec’s “Deep Underground Engineering”

  • 摘要:

    针对“深地工程”构造和储层介质复杂、埋藏深、地层压力高和温度高等复杂工况,中国石化围绕深层超深层油气测试、超高温高压井下工具、地面测试、窄安全窗口油气井测试工程设计和完井测试液等技术进行攻关研究,完成100余口8 000 m以深油气井的测试施工,初步形成了“深地工程”油气测试关键技术及配套装备,有力支撑了塔里木盆地、四川盆地和准噶尔盆地等深层超深层油气资源的勘探开发。梳理总结了中国石化“深地工程”油气测试关键技术,分析了中国石化“深地工程”向9 000 m乃至10 000 m以深迈进情况下油气测试技术面临的主要挑战,展望了特深层高温高压油气测试工程设计、特深层高温高压油气测试完井工艺、地面自动化测试和高性能油气测试工具等技术在未来的发展。该技术总结与展望对构建更加成熟、专业、安全、高效的油气测试技术体系,助力深层超深储层油气勘探开发取得更大突破有一定借鉴意义。

    Abstract:

    In view of complex structures and reservoir media in "Deep Underground Engineering", which includes deep burial, high formation pressure and temperature, and other complicated conditions, Sinopec has carried out key research on technologies such as deep and ultra-deep oil and gas testing, ultra-high temperature and high-pressure bottom hole assembly (BHA), surface testing, oil and gas well testing engineering design of narrow safety window, and well completion testing fluid, etc. Sinopec successfully completed the testing construction of more than 100 oil and gas wells with depth more than 8000 m, and initially formed the initial key technologies and supporting equipment for oil and gas testing in “Deep Underground Engineering”, which strongly supported the exploration and production of deep and ultra-deep oil and gas resources in the Tarim Basin, Sichuan Basin, and Junggar Basin. The key technologies of oil and gas testing in Sinopec’s “Deep Underground Engineering” were summarized, and the challenges in oil and gas testing technologies faced by Sinopec’s “Deep Underground Engineering” during exploration from 9000 m to deeper than 10000 m were analyzed. Technical prospects were put forward for the design of extra-deep high-temperature and high-pressure oil and gas testing engineering, extra-deep high-temperature and high-pressure oil and gas testing completion technology, ground automation testing, and high-performance oil and gas testing tools, etc. The overview and prospect of these technologies are of reference significance for the construction of a more mature, professional, safe, and efficient oil and gas testing technology system, in order to help achieve greater breakthroughs in the exploration and development of deep and ultra-deep oil and gas reservoirs.

  • 图  1   超深层油气井加强型“五阀一封”测试管柱示意

    Figure  1.   Enhanced “five valve and one packer” test string for ultra-deep oil and gas wells

    图  2   超深层油气井测试−改造−完井一体化管柱示意

    Figure  2.   Integrated string for testing, stimulation and completion of ultra-deep oil and gas wells

    图  3   超深高酸性油气藏联作测试管柱

    Figure  3.   Joint testing string for ultra-deep and highly acidic oil and gas reservoirs

    图  4   超深长水平段水平井滑套分流完井试气管柱

    Figure  4.   Gas testing string for sliding sleeve diversion completion in ultra-deep horizontal wells with long horizontal section

    图  5   准噶尔盆地深层砾岩储层油气测试技术管柱

    Figure  5.   Oil and gas testing string for a deep conglomerate reservoir in the Junggar Basin

    图  6   中国石化“深地工程”地面测试流程示意

    Figure  6.   Ground testing process for Sinopec’s "Deep Underground Engineering"

    图  7   窄安全窗口油气井测试工程设计技术

    Figure  7.   Design technology for oil and gas well testing engineering of narrow safety window

    表  1   中国石化系列超高温高压油气测试封隔器参数(部分)

    Table  1   Parameters for Sinopec series ultra-high-temperature and high-pressure oil and gas testing packers (part)

    工具名称适用套管内径/mm最大外径/mm最小内径/mm最大压差/MPa最大耐温/℃坐封方式解封方式
    SSC-JMR机械封隔器108.6~112.0103.038.5/45.0105204机械上提回收
    114.3108.038.5/45.0105204机械上提回收
    147.1137.928.0/52.5105204机械上提回收
    152.5~154.8146.030.0/57.0105204机械上提回收
    171.5162.028.0/57.0105204机械上提回收
    SSC-SHLR/HLR
    液压完井封隔器
    114.3108.057.4105204液压上提/专用工具回收
    147.1139.075.5105204液压上提/专用工具回收
    152.5~154.8148.076.2105204液压上提/专用工具回收
    171.5160.082.6105204液压上提/专用工具回收
    SSC-ESET
    液压永久封隔器
    114.3108.057.4105204液压不可回收
    118.6~121.4114.062.0105204液压不可回收
    152.5~154.8148.076.2105204液压不可回收
    171.5160.082.6105204液压不可回收
    K343裸眼
    封隔器
    140.070.070177液压不可回收
    152.070.070177液压不可回收
    PHP-3封隔器114.3108.049.070204液压上提回收
    152.5~154.8148.076.270204液压上提回收
    大通径测试阀≥152.5105.050.0210232液压
    下载: 导出CSV
  • [1] 陆晓如. 破解深地油气关键地质问题:专访中国科学院院士贾承造[J]. 中国石油石化,2023,(17):14–17.

    LU Xiaoru. To solve the key geological problems of deep oil and gas:interview with Jia Chengzao, academician of Chinese Academy of Sciences[J]. China Petrochem, 2023, (17): 14–17.

    [2] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158.

    ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.

    [3] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.

    [4] 贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版),2023,47(5):1–12.

    JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 1–12.

    [5] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.1016/S1876-3804(22)60001-6

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.1016/S1876-3804(22)60001-6

    [6] 张煜,李海英,陈修平,等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质–工程一体化实践与成效[J]. 石油与天然气地质,2022,43(6):1466–1480.

    ZHANG Yu, LI Haiying, CHENG Xiuping, et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(6): 1466–1480.

    [7]

    ZHANG Bo, YUAN Fayong, SU Hao, et al. Progress and development direction of “three-high”oil and gas well testing technology[J]. Journal of Power and Energy Engineering, 2022, 10(6): 1–13. doi: 10.4236/jpee.2022.106001

    [8] 张科,苏劲,陈永权,等. 塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报,2023,97(6):2026–2041.

    ZHANG Ke, SU Jin, CHEN Yongquan, et al. The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(6): 2026–2041.

    [9] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.

    [10] 白彬珍,曾义金,葛洪魁. 顺北56X特深水平井钻井关键技术[J]. 石油钻探技术,2022,50(6):49–55.

    BAI Binzhen, ZENG Yijin, GE Hongkui. Key technologies for the drilling of ultra-deep horizontal Well Shunbei 56X[J]. Petroleum Drilling Techniques, 2022, 50(6): 49–55.

    [11] 何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控” 高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.

    HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.

    [12] 耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023,51(2):81–89.

    GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81–89.

    [13] 刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    [14] 王清华,杨海军,汪如军,等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探,2021,26(4):58–71.

    WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58–71.

    [15] 邱金平,张明友,才博,等. 超深高温高压含硫化氢气藏高效试油技术新进展[J]. 钻采工艺,2018,41(2):49–50.

    QIU Jinping, ZHANG Mingyou, CAI Bo, et al. New advancements in ultradeep HPHT sour gas well testing[J]. Drilling & Production Technology, 2018, 41(2): 49–50.

    [16] 戴强,张本健,张晋海. 双鱼石构造超深超高压含硫气井完井管柱完整性设计探讨[J]. 钻采工艺,2019,42(6):44–46.

    DAI Qiang, ZHANG Benjian, ZHANG Jinhai. To probe on completion string integrity design for ultradeep ultrahigh-pressure sulfur-contained gas wells at Shuangyushi structure[J]. Drilling & Production Technology, 2019, 42(6): 44–46.

    [17] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87.

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.

    [18] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.

    [19] 刘志英,王芝尧,董拥军,等. 一趟管柱分层射孔试油联作技术[J]. 石油钻探技术,2014,42(2):97–101.

    LIU Zhiying, WANG Zhiyao, DONG Yongjun, et al. The technology of integrated layered perforation and formation testing in one trip[J]. Petroleum Drilling Techniques, 2014, 42(2): 97–101.

    [20] 赵永强,宋振响,王斌,等. 准噶尔盆地油气资源潜力与中国石化常规–非常规油气一体化勘探策略[J]. 石油实验地质,2023,45(5):872–881.

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and Sinopec’s integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology and Experiment, 2023, 45(5): 872–881.

    [21] 李继,卫然,蒋炎. 勘探试油测试新技术在胜利油田的应用[J]. 石油天然气学报,2008,30(2):502–504.

    LI Ji, WEI Ran, JIANG Yan. Application of new exploration and testing technologies in Shengli Oilfield[J]. Journal of Oil and Gas Technology, 2008, 30(2): 502–504.

    [22] 阿布力米提·依明. 准噶尔盆地中央坳陷西部深层油气成因与成藏机理[D]. 青岛:中国石油大学(华东),2021.

    ABULIMITI Yiming. Generation and accumulation of deep-seated oil and gas in the western central depression of Junggar Basin[D]. Qingdao: China University of Petroleum(East China), 2021.

    [23] 孙靖,齐洪岩,薛晶晶,等. 准噶尔盆地深层—超深层致密砾岩储层特征及控制因素[J]. 天然气工业,2023,43(8):26–37.

    SUN Jing, QI Hongyan, XUE Jingjing, et al. Characteristics and controlling factors of deep and ultra deep tight conglomerate reservoirs in the Junggar Basin[J]. Natural Gas Industry, 2023, 43(8): 26–37.

    [24] 史建南. 准噶尔盆地腹部油气成藏机理研究[D]. 北京:中国石油大学(北京),2007.

    SHI Jiannan. Study on hydrocarbon accumulation mechanism in the hinterland of the Junggar Basin[D]. Beijing: China University of Petroleum(Beijing), 2007.

    [25] 汪孝敬,白保军,芦慧,等. 深层—超深层高温极强超压砂砾岩储层特征及主控因素:以准噶尔盆地南缘四棵树凹陷高泉地区白垩系清水河组为例[J]. 东北石油大学学报,2022,46(3):54–65.

    WANG Xiaojing, BAI Baojun, LU Hui, et al. Characteristics and main controlling factors of deep and ultra-deep glutenite reservoirs with high temperature and very strong overpressure: a case study from the Cretaceous Qingshuihe Formation in Gaoquan Area, Sikeshu Sag, southern margin of Junggar Basin[J]. Journal of Northeast Petroleum University, 2022, 46(3): 54–65.

    [26] 吴志均,段德祥,王文广,等. 明格布拉克构造 “五高” 深井试油测试技术[J]. 油气井测试,2020,29(2):13–20.

    WU Zhijun, DUAN Dexiang, WANG Wenguang, et al. The oil test technology for “five high” deep well in Mingbulak Structure[J]. Well Testing, 2020, 29(2): 13–20.

    [27] 毛军,郭肖,庞伟. 高温高压气密封测试封隔器研发及现场试验[J]. 石油钻探技术,2023,51(6):71–76.

    MAO Jun, GUO Xiao, PANG Wei. Development and application of HTHP gas seal test packer[J]. Petroleum Drilling Techniques, 2023, 51(6): 71–76.

    [28] 丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023,51(4):104–113.

    DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104–113.

    [29] 姚展华,王玉忠,左俊香,等. 浅谈试油设计的优化[J]. 油气井测试,2014,23(1):46–48.

    YAO Zhanhua, WANG Yuzhong, ZUO Junxiang, et al. Brief discuss on the optimization of oil test design[J]. Well Testing, 2014, 23(1): 46–48.

    [30] 何骁,陈更生,吴建发,等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业,2022,42(8):24–34.

    HE Xiao, CHEN Gengsheng, WU Jianfa, et al. Deep shale gas exploration and development in the southern Sichuan Basin: new progress and challenges[J]. Natural Gas Industry, 2022, 42(8): 24–34.

    [31]

    WOOD P, SIMPSON A, HOLLAND B, et al. Monitoring flow and completion integrity of a North Sea subsea HPHT appraisal well during an extended well test using permanently installed fiber-optic temperature sensors[R]. SPE 137120, 2010.

    [32]

    FUH G F, NOZAKI M. Completion design using sand management approach based on sanding prediction analysis for HPHT gas wells[R]. SPE 170954, 2014.

    [33]

    OAKES N E. HPHT, development of the subsea option[R]. OTC 8741, 1998.

    [34]

    BURGER R, GRIGSBY T, ROSS C, et al. Single-trip multiple-zone completion technology has come of age and meets the challenging completion needs of the gulf of Mexico’s deepwater lower tertiary play[R]. SPE 128323, 2010.

  • 期刊类型引用(54)

    1. 向九洲,王春兵,肖晖,李泉辉,张磊,王鸿森. 压裂液返排对导流能力伤害实验研究. 非常规油气. 2025(01): 134-140 . 百度学术
    2. 高书阳,薄克浩,张亚云,高宏,皇甫景龙. 川东北陆相页岩储层井壁失稳机理研究. 钻井液与完井液. 2025(02): 217-224 . 百度学术
    3. 张欣涛. 降低油基钻井液成本的技术措施. 采油工程. 2025(01): 57-61+86 . 百度学术
    4. 冯永超,李大雷. 泾河油田页岩油储层井壁失稳机理研究. 石油地质与工程. 2024(01): 122-126 . 百度学术
    5. 孙平涛,赵建忠,刘强. 吉林油田页岩油水平井二开钻井关键技术及应用. 天然气勘探与开发. 2024(03): 111-117 . 百度学术
    6. 刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 . 本站查看
    7. 况雨春,张涛,林伟. 小尺度水平井钻柱动力学实验台架研制及应用. 石油钻探技术. 2024(04): 15-23 . 本站查看
    8. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    9. 张亚洲,韦世明,金衍,王迪. 陆相页岩油藏三维空间应力场动态演化规律. 地下空间与工程学报. 2024(S1): 163-171+212 . 百度学术
    10. 董文浩,王琦,衣方宇,夏方杰,魏守忠. 苏里格小井眼侧钻水平井钻井提速配套技术. 内蒙古石油化工. 2024(08): 82-85 . 百度学术
    11. 车卫勤,庞茂源,毕丽娜,岳小同,崔锦,王栋. 页岩油上下地层漏失井控漏提速钻井技术. 石油钻采工艺. 2024(02): 137-146 . 百度学术
    12. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    13. 张锦宏. 中国石化页岩油工程技术新进展. 油气藏评价与开发. 2023(01): 1-8 . 百度学术
    14. 余定泽. 关于钻井提速工艺在实践中应用. 中国石油和化工标准与质量. 2023(07): 161-163 . 百度学术
    15. 李晓明,倪华峰,苏兴华,詹胜,许祥见. 陇东X平台页岩油水平井减摩降阻配套技术研究与应用. 西安石油大学学报(自然科学版). 2023(03): 70-74 . 百度学术
    16. 皮光林. 美国页岩油气产业现状及工程技术演进趋势. 当代石油石化. 2023(05): 6-9 . 百度学术
    17. 刘东亮,陈玉平,李傲仙,郭莉. 非常规油气水平井湿鞋固井首段压裂新工艺. 石油钻采工艺. 2023(01): 85-89 . 百度学术
    18. 王磊,王恩茂,刘昆轮,王刚. 暂阻球对急倾斜煤层水力压裂造缝的影响研究. 煤炭技术. 2023(07): 103-107 . 百度学术
    19. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    20. 王春伟,杜焕福,孙鑫,戴彩丽,杨金莉,陈荣华. 基于灰色关联分析的页岩油甜点综合评价方法——以渤海湾盆地渤南洼陷为例. 石油钻探技术. 2023(05): 130-138 . 本站查看
    21. 郭亮,邹荣,王维良,涂福洪,杨静,李敏. 新疆吉木萨尔页岩油水平井钻井关键技术. 西部探矿工程. 2023(11): 46-48 . 百度学术
    22. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看
    23. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    24. 张仁贵,刘迪仁,彭成,刘宇峰. 中国陆相页岩油勘探开发现状及展望. 现代化工. 2022(03): 6-10 . 百度学术
    25. 王治国,赵侍晗,沈建中,高启国,严燃. 118 mm侧钻水平井钻完井技术在SY3-7HF井的应用. 中国石油和化工标准与质量. 2022(05): 195-198 . 百度学术
    26. 张小宁,于文华,叶新群,李令东,明瑞卿,王芹. 加拿大白桦地致密气超长小井眼水平井优快钻井技术. 中国石油勘探. 2022(02): 142-149 . 百度学术
    27. 熊晓菲,盛家平. 吉木萨尔页岩油藏泡沫辅助注气吞吐试验研究. 石油钻探技术. 2022(02): 22-29 . 本站查看
    28. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 . 百度学术
    29. 罗子淇. 长水平段水平井钻井技术难点分析及对策研究. 西部探矿工程. 2022(09): 55-56+62 . 百度学术
    30. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 . 百度学术
    31. 李玉海,李博,柳长鹏,郑瑞强,李相勇,纪博. 大庆油田页岩油水平井钻井提速技术. 石油钻探技术. 2022(05): 9-13 . 本站查看
    32. 邓钧耀,刘奕杉,乔磊,王开龙,胡凯. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术. 石油钻探技术. 2021(02): 37-41 . 本站查看
    33. 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示. 石油钻采工艺. 2021(01): 1-6 . 百度学术
    34. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
    35. 张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 . 本站查看
    36. 陈作,刘红磊,李英杰,沈子齐,许国庆. 国内外页岩油储层改造技术现状及发展建议. 石油钻探技术. 2021(04): 1-7 . 本站查看
    37. 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术. 石油钻探技术. 2021(04): 22-28 . 本站查看
    38. 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术. 石油钻探技术. 2021(04): 53-58 . 本站查看
    39. 贾庆升,钟安海,张子麟,丁然. 济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究. 石油钻探技术. 2021(04): 78-84 . 本站查看
    40. 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议. 石油钻探技术. 2021(04): 14-21 . 本站查看
    41. 赵振峰,李楷,赵鹏云,陶亮. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议. 石油钻探技术. 2021(04): 85-91 . 本站查看
    42. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
    43. 夏赟,张丽萍,褚浩元,李佳琦,马少云. 吉木萨尔页岩油“下甜点”低成本技术. 油气藏评价与开发. 2021(04): 536-541 . 百度学术
    44. 李海,刘文鹏,陈绍云,杨决算,陈琳琳,田玉栋,袁后国,李欢欢. 大庆GL地区G, Y2HC井水平井钻井技术. 西部探矿工程. 2021(12): 55-57 . 百度学术
    45. 史配铭,李晓明,倪华峰,石崇东,姜庆波,程华林. 苏里格气田水平井井身结构优化及钻井配套技术. 石油钻探技术. 2021(06): 29-36 . 本站查看
    46. 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探. 2020(02): 1-13 . 百度学术
    47. 杨灿,王鹏,饶开波,蔺玉水,李伟,叶顺友. 大港油田页岩油水平井钻井关键技术. 石油钻探技术. 2020(02): 34-41 . 本站查看
    48. 周立宏,赵贤正,柴公权,姜文亚,蒲秀刚,王晓东,韩文中,官全胜,冯建园,刘学伟. 陆相页岩油效益勘探开发关键技术与工程实践——以渤海湾盆地沧东凹陷古近系孔二段为例. 石油勘探与开发. 2020(05): 1059-1066 . 百度学术
    49. 孙永兴,贾利春. 国内3000 m长水平段水平井钻井实例与认识. 石油钻采工艺. 2020(04): 393-401 . 百度学术
    50. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    51. ZHOU Lihong,ZHAO Xianzheng,CHAI Gongquan,JIANG Wenya,PU Xiugang,WANG Xiaodong,HAN Wenzhong,GUAN Quansheng,FENG Jianyuan,LIU Xuewei. Key exploration & development technologies and engineering practice of continental shale oil: A case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development. 2020(05): 1138-1146 . 必应学术
    52. 孙龙德. 古龙页岩油(代序). 大庆石油地质与开发. 2020(03): 1-7 . 百度学术
    53. 陈中普,王芳,苏沛强,任立春,赵聪会,董峰,刘坤,胡丰波. 油气勘探开发新型地质工程一体化平台构建思考. 录井工程. 2020(04): 1-9 . 百度学术
    54. 郭旭洋,金衍,林伯韬. 页岩油立体开发诱发的储层地应力动态响应特征. 石油钻采工艺. 2020(06): 738-744 . 百度学术

    其他类型引用(5)

图(7)  /  表(1)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  46
  • PDF下载量:  131
  • 被引次数: 59
出版历程
  • 收稿日期:  2024-02-06
  • 修回日期:  2024-03-07
  • 网络出版日期:  2024-04-14
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回