Technique of High-Performance Water-Based Drilling Fluid for Continental Shale Oil in Subei Basin
-
摘要:
为解决常规油基钻井液在苏北页岩油工区钻井施工中面临的井壁失稳、环境污染等技术问题,在研究井壁失稳机理的基础上,提出了“外防水侵、内控膨胀”的井壁稳定控制方法,制定了“封堵为主+强化抑制+润湿反转+合理密度”的技术措施,研发了可变形微纳米聚合物封堵剂、页岩润湿反转剂和原油乳化分散降黏剂等关键助剂,构建了高性能水基钻井液体系SM-ShaleMud-II。该钻井液体系高温高压滤失量小于6.0 mL,极压润滑系数小于0.12,可有效降低储层泥页岩力学性能的弱化程度。苏北页岩油区块的10口井应用了该钻井液体系,钻井过程中井壁稳定,套管下入顺利,取得了良好的应用效果。高性能水基钻井液体系SM-ShaleMud-II的成功研制,为非常规页岩油气低成本绿色开发提供了一种有效的技术手段。
Abstract:In order to solve the technical problems such as borehole instability and environmental pollution faced by conventional oil-based drilling fluid in the shale oil working area of Subei Basin during drilling, a new control method of borehole stability was put forward, featuring external waterproofing and internal expansion control by studying the mechanism of borehole instability. The technical measures of “dominant plugging + strengthened inhibition + wetting reversal + reasonable density” was developed, and the key additives such as deformable micro-nano polymer plugging agent, shale wetting reversal agent, and crude oil emulsifying dispersion viscosity reducing agent were developed. Finally, a high-performance water-based drilling fluid system, SM-ShaleMud-II, was established. The high temperature and high pressure filtration loss of the drilling fluid system was less than 6.0 L, and the extreme pressure lubrication coefficient was less than 0.12, which could effectively reduce the weakening degree of the mechanical properties of the reservoir shale. The drilling fluid was applied to 10 wells in the shale oil area of Subei Basin, ensuring borehole stability and smooth casing running and achieving good application results. The successful development of high-performance water-based drilling fluid, SM-ShaleMud-II, provides an effective technical means for low-cost and green development of unconventional shale oil and gas.
-
Keywords:
- Subei Basin /
- shale oil /
- water-based drilling fluid /
- wellbore stability /
- drilling fluid additives
-
-
表 1 不同润滑剂的润滑效果
Table 1 Effect comparison of lubricant agents
润滑剂及加量 极压润滑系数 黏滞系数 0.237 0.16 1.5%SMJH-1+1.5%SMLUB-E 0.122 0.07 2%SMJH-1+2%SMLUB-E 0.106 0.06 2%SMJH-1+2%SMLUB-E+
1%SMLS-10.092 0.04 表 2 高性能水基钻井液SM-ShaleMud-II的基础性能评价结果
Table 2 Basic performance evaluation results of high-performance water-based drilling fluid SM-ShaleMud-II
编号 密度/(kg∙L−1) 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力 /Pa 动塑比 静切力/Pa 高温高压滤失量/mL API滤失量/mL 1 1.20 29 22 7 0.32 2.0/13.0 6.0 1.8 2 1.50 31 23 7 0.30 2.5/12.5 5.8 1.6 3 1.80 35 26 9 0.35 3.5/14.0 5.4 1.2 -
[1] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[2] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[3] 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114–123. doi: 10.11911/syztjs.2023028 WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114–123. doi: 10.11911/syztjs.2023028
[4] 昝灵,骆卫峰,印燕铃,等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质,2021,43(2):233–241. doi: 10.11781/sysydz202102233 ZAN Ling, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology and Experiment, 2021, 43(2): 233–241. doi: 10.11781/sysydz202102233
[5] 姚红生,昝灵,高玉巧,等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质,2021,43(5):776–783. doi: 10.11781/sysydz202105776 YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology and Experiment, 2021, 43(5): 776–783. doi: 10.11781/sysydz202105776
[6] 胡进科,王宗敏,邹宽. 华东油气田阜宁组储层保护效果分析[J]. 石化技术,2018,25(9):12–14. doi: 10.3969/j.issn.1006-0235.2018.09.005 HU Jinke, WANG Zongmin, ZOU Kuan. Reservoir protection effect evaluate of Funing Group of East China oil and gas fields[J]. Petrochemical Industry Technology, 2018, 25(9): 12–14. doi: 10.3969/j.issn.1006-0235.2018.09.005
[7] 肖超,李瑞磊,杨春国,等. 江苏新生代脆性泥页岩井眼稳定技术[J]. 石油钻探技术,2001,29(6):25–27. doi: 10.3969/j.issn.1001-0890.2001.06.010 XIAO Chao, LI Ruilei, YANG Chunguo, et al. Well stabilizing techniques in brittle shale formations in Jiangsu[J]. Petroleum Drilling Techniques, 2001, 29(6): 25–27. doi: 10.3969/j.issn.1001-0890.2001.06.010
[8] 杨超. 钻井液智能检测评价系统的研制与现场应用[J]. 钻井液与完井液,2023,40(3):319–324. doi: 10.12358/j.issn.1001-5620.2023.03.006 YANG Chao. Development and field application of a drilling fluid intelligent testing and evaluating system[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 319–324. doi: 10.12358/j.issn.1001-5620.2023.03.006
[9] 李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61–67. doi: 10.11911/syztjs.2022041 LI Fan, LI Daqi, JIN Junbin, et al. Drilling fluid technology for wellbore stability of the diabase formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61–67. doi: 10.11911/syztjs.2022041
[10] 周启成,梁应红,单海霞,等. 抗高温高密度生物质钻井液体系研究及应用[J]. 石油钻探技术,2022,50(6):78–84. doi: 10.11911/syztjs.2022109 ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, et al. Research and application of a high-temperature resistant and high-density biomass drilling fluid system[J]. Petroleum Drilling Techniques, 2022, 50(6): 78–84. doi: 10.11911/syztjs.2022109
[11] 秦春,刘纯仁,陈文可,等. 苏北盆地HY1HF井钻完井关键技术[J]. 复杂油气藏,2022,15(3):17–23. QIN Chun, LIU Chunren, CHEN Wenke, et al. Key technologies for drilling and completion of HY 1HF in Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2022, 15(3): 17–23.
[12] 陶怀志,明显森,马光长,等. 水基钻井液强吸附多元醇酯键合润滑剂及作用机理[J]. 钻井液与完井液,2022,39(5):579–586. doi: 10.12358/j.issn.1001-5620.2022.05.008 TAO Huaizhi, MING Xiansen, MA Guangchang, et al. Study on mechanisms of a highly adsorptive polyol ester bonded lubricant for water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 579–586. doi: 10.12358/j.issn.1001-5620.2022.05.008
[13] 韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026 HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
[14] 罗鸣,高德利,黄洪林,等. 钻井液对页岩力学特性及井壁稳定性的影响[J]. 石油钻采工艺,2022,44(6):693–700. LUO Ming, GAO Deli, HUANG Honglin, et al. Effects of drilling fluids on shale mechanical properties and wellbore stability[J]. Oil Drilling & Production Technology, 2022, 44(6): 693–700.
[15] 田增艳,杨贺卫,李晓涵,等. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术,2021,49(4):59–65. doi: 10.11911/syztjs.2021012 TIAN Zengyan, YANG Hewei, LI Xiaohan, et al. Drilling fluid technology for horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59–65. doi: 10.11911/syztjs.2021012
[16] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[17] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058 YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
[18] 曹辉,李宝军,赵向阳. 厄瓜多尔Tambococha油田水平井钻井液技术[J]. 石油钻探技术,2022,50(1):54–59. doi: 10.11911/syztjs.2021104 CAO Hui, LI Baojun, ZHAO Xiangyang. Drilling fluid technology for horizontal wells in Ecuador Tambococha Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 54–59. doi: 10.11911/syztjs.2021104
[19] 刘均一,柴金鹏,李光泉,等. 准噶尔盆地硬脆性页岩强化致密封堵水基钻井液技术[J]. 石油钻探技术,2022,50(5):50–56. doi: 10.11911/syztjs.2022022 LIU Junyi, CHAI Jinpeng, LI Guangquan, et al. Enhanced tight plugging water-based drilling fluid technology for hard and brittle shales in Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(5): 50–56. doi: 10.11911/syztjs.2022022
[20] 钱晓琳,宣扬,林永学,等. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术,2020,48(1):34–39. doi: 10.11911/syztjs.2019113 QIAN Xiaolin, XUAN Yang, LIN Yongxue, et al. Development and application of an environmental-friendly drilling fluid lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34–39. doi: 10.11911/syztjs.2019113
[21] 王琳,董晓强,杨小华,等. 高密度钻井液用润滑剂SMJH-1的研制及性能评价[J]. 钻井液与完井液,2016,33(1):28–32. WANG Lin, DONG Xiaoqiang, YANG Xiaohua, et al. Development and evaluation of a high density drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 28–32.
[22] 宋瀚轩,叶艳,周志世,等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液,2022,39(5):550–557. doi: 10.12358/j.issn.1001-5620.2022.05.004 SONG Hanxuan, YE Yan, ZHOU Zhishi, et al. Development of paraffin microemulsion and its application in water-based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 550–557. doi: 10.12358/j.issn.1001-5620.2022.05.004
[23] 孔维升,李晓明,韩成福,等. 致密气藏二开结构水平井钻井液体系及现场应用[J]. 钻井液与完井液,2023,40(1):73–81. doi: 10.12358/j.issn.1001-5620.2023.01.010 KONG Weisheng, LI Xiaoming, HAN Chengfu, et al. The field application of a drilling fluid for a two-interval horizontal well penetrating tight gas reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(1): 73–81. doi: 10.12358/j.issn.1001-5620.2023.01.010
-
期刊类型引用(5)
1. 刘金璐,李军,何举涛,杨宏伟,柳贡慧,李辉. 控压固井注入阶段流体密度和流变性分段预测方法. 石油钻探技术. 2024(01): 45-53 . 本站查看
2. 张广标. 地质钻探冲洗液在断层破碎带中的应用. 地下水. 2024(05): 332-335 . 百度学术
3. 张举政,杨远光,孙勤亮,付家文,万浩东,谢应权. pH值和稀释剂对固井前甲酸盐钻井液性能的影响. 油田化学. 2019(01): 7-11 . 百度学术
4. 陈小华,张福铭,赵琥,代丹,王雪山. 油基钻井液用冲洗液PC–W31L的制备及性能研究. 石油钻探技术. 2019(02): 81-86 . 本站查看
5. 林四元,张杰,韩成,胡杰,田宗强,郑浩鹏. 东方气田浅部储层大位移水平井钻井关键技术. 石油钻探技术. 2019(05): 17-21 . 本站查看
其他类型引用(5)