Processing math: 100%

页岩储层压裂物理模拟技术进展及发展趋势

侯冰, 张其星, 陈勉

侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
引用本文: 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096
Citation: HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):66-77. DOI: 10.11911/syztjs.2023096

页岩储层压裂物理模拟技术进展及发展趋势

基金项目: 国家重点研究与发展计划–中美政府间国际合作项目“深部含煤岩系超临界CO2穿层压裂–驱替–封存评价技术研究”(编号:2022YFE0129800)、中国石油天然气集团有限公司–中国石油大学(北京)战略合作科技专项“鄂尔多斯盆地致密油–页岩油富集、高效开发理论与关键技术研究”(编号:ZLZX2020-02)联合资助
详细信息
    作者简介:

    侯冰(1979—),男,辽宁北镇人, 2002年毕业于辽宁石油化工大学油气储运工程专业,2009年获中国石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事石油工程岩石力学相关研究。E-mail:binghou@vip.163.com

  • 中图分类号: TE357

Status and Tendency of Physical Simulation Technology for Hydraulic Fracturing of Shale Reservoirs

  • 摘要:

    传统压裂物理模拟难以仿真深部储层高温高压、复杂地应力和工况环境,在模拟分段细分射孔工艺和实时监测裂缝扩展路径等方面存在一定挑战。系统调研了真三轴压裂物理模拟试验的试样制备、压裂井型和射孔组合、装置原理、相似准则和裂缝监测方式等,探究变排量、交替注液作用模式,穿层压裂缝高延伸机制,缝群压裂竞争扩展和暂堵转向模式;研究厘清了变排量和交替注液在提升缝网改造规模上的差异性,归纳了层状页岩储层水力裂缝缝高穿层主控因素排序,揭示了密切割多段多簇施工模式下裂缝群竞争扩展下的非平面、非对称和非均衡等扩展特征,总结了暂堵后裂缝转向扩展形态,指出“井工厂”立体压裂物理模拟、智能化和数字化为未来研究趋势。采取调整压裂时机、改变射孔参数和优化压裂液性能等措施可以有效控制裂缝扩展路径,能大幅度开启多尺度弱面,增大页岩储层压裂造缝规模。研究结果对深层和超深层页岩储层优化压裂施工参数、提升压裂改造效果具有一定的借鉴作用。

    Abstract:

    Traditional hydraulic fracturing physical simulations face challenges such as simulating high temperature and high pressure, complex in-situ stress and working conditions, staged and subdivided perforation technologies, and real-time monitoring of fracture propagation. The sample preparation, well type and perforation combinations, device principles, similarity criteria, and fracture monitoring methods in true triaxial fracturing physical simulation experiment were systematically investigated. The variable displacement, alternating fluid injection modes, vertical fracture propagation mechanisms, competitive propagation among fracture groups, and fracture turning modes after temporary plugging were explored. The differences between variable displacement and alternating fluid injection in improving the scale of fracture network stimulation were clarified, and the ranking of the main controlling factors for hydraulic fractures and vertical fracture propagation in layered shale reservoirs was summarized. The non-planar, asymmetric, and unbalanced propagation characteristics of fracture groups in competitive propagation under dense cutting and multistage/multi-cluster fracturing were revealed, and the fracture propagation pattern after temporary plugging was summarized. Three-dimensional fracturing physical simulation, intelligence, and digitization of well plants were pointed out as future research trends. Adjusting the fracturing timing, modifying perforation parameters, and optimizing fracturing fluid properties could effectively control fracture propagation, significantly open multi-scale weak surfaces, and increase stimulation scale for shale reservoirs. This overview can serve as a reference for optimizing fracturing operation parameters and improving the effectiveness of fracturing stimulation for deep and ultra-deep shale reservoirs.

  • 近年来,中国海上油田对低渗透储层开发的需求越来越迫切[1],而在开发低渗透、超低渗透储层时,往往需要对储层进行压裂改造[2],在相同有效改造体积范围内储层中形成的压裂缝数量越多、缝网越复杂,改造效果就越好,产能也就越高[3-5]。深入了解和认识压裂裂缝的几何形态、延伸情况、发育程度、分布及方位等信息,可以为试油选层和井位部署提供决策依据,同时通过压裂效果评价验证或修正水力压裂中采用的工艺及开发方案等,降低压裂成本,提高油气采收率,达到合理高效开发油气田的目的。

    储层压裂效果评价常用的传统测井方法主要有井温测井、同位素测井、注硼中子寿命测井和补偿中子测井等,主要原理是利用井筒存在压裂缝时测井曲线表现出的不同测井响应特征,来评价储层压裂效果[6-7],但上述方法在实际应用中都存在一定的局限性。井温测井受评价精度、测井时间限制等因素影响,常作为评价的辅助项目;同位素测井和注硼中子寿命测井评价储层压裂效果的原理相同,但是会对地层造成一定的污染[7],目前应用较少;补偿中子测井受压裂施工工艺(如脱砂)、压裂前后仪器类型及刻度的影响,会造成储层类型和压裂规模相当井的评价结果差别较大[8]。非常规油气勘探主要应用微地震监测技术进行压裂效果监测,在邻井中(或地面)布设检波器,通过监测压裂井在压裂过程中诱发的微地震波来描述压裂过程中裂缝延伸的几何形状和空间展布,能够实时提供压裂施工过程中产生裂隙的高度、长度和方位角等信息[9]。但由于海上作业成本及作业难度的限制,该技术目前无法用于海上储层压裂效果评价[10]。水力压裂分布式光纤传感监测技术已成为页岩、致密砂岩等非常规油气储层开发的重要手段,为压裂工艺、裂缝扩展、邻井干扰和压后效果评价等方面提供了重要的实时数据和解释结果,但该技术应用时间较短,相关理论解释模型及方法还不成熟[11-14]。人工智能已成为推动储层压裂技术发展的重要方向,但智能压裂工业化应用整体上还处于起步阶段,仅在智能辅助预测、优化设计方面有一定应用[15-17]。近年来,基于阵列声波测井的压裂效果评价技术逐渐发展起来。窦伟坦等人[18]通过对比水力压裂前后时差的各向异性差异来评价压裂裂缝高度,然而该技术受到水力裂缝缝网形态[19]、地层相对于井眼的角度等方面的影响;张国栋等人[620]综合应用纵波层析成像和偶极声波远探测成像技术进行压裂效果评价,但不能评价压裂缝径向长度;黑创等人[21]利用偶极散射波技术评价水力压裂效果,提高了水力压裂效果的评价范围,但不能评价近井地带水力裂缝的高度。为了满足海上砂岩储层压裂改造效果评价的需求,笔者提出了一种基于阵列声波测井的储层压裂效果综合评价方法,利用纵波层析成像技术对比压裂前后径向速度剖面的差异,来评价近井壁水力裂缝的高度;并结合偶极散射波技术,评价压裂后远井处水力裂缝的高度及径向展布长度。

    近年来,海上压裂井在压裂前后均进行了阵列声波测井,为利用阵列声波测井资料进行压裂效果评价提供了基础数据。笔者综合利用纵波层析成像技术与偶极散射波技术进行储层压裂效果评价,下面介绍上述2种技术的原理。

    在压裂过程中,井壁岩石在应力作用下会发生破裂,产生大量的裂缝,表现之一是岩石弹性波速明显降低[22],井壁岩石波速的降低幅度取决于岩石中裂缝的密度[23-24],裂缝密度越大,岩石波速的降低幅度越大。因此,从井壁到地层深处地层波速呈现出由低到高的径向变化,通过求取近井壁地层波速的径向变化,可以得到井壁附近岩石的破裂程度,直接反映近井壁附近储层的压裂效果。

    B. E. Hornby[25]利用射线追踪法建立纵波径向速度剖面,获得井壁附近地层沿轴向和径向的二维速度剖面。选取二维速度剖面函数,对其用射线追踪的方法计算得到声波走时,然后使计算和实测走时之差达到最小,得到与实测数据符合程度最好的速度分布模型,该模型可以描述地层波速沿井轴向和径向的变化情况。声波走时表达式为:

    t=sdsv(r,z) (1)

    式中:t为声波走时,s;z为沿井轴方向上的位置,m;r为沿井眼径向的位置,m;v(r,z)为二维速度剖面函数,m/s;s为声波在地层中所走过的最短路径,m。

    地下介质存在裂缝、溶孔等非均质体时,速度和密度的非均质性会引起不同形式和不同强度的声波散射,尤其当非均质体的尺度与声波波长相当时,会产生较强的散射波。研究表明,相较于单极子声波测井,偶极散射波具有频率低、径向探测深、波形形态单一、特征明显等优势,可以对井孔周围数十米范围内的地层进行分析。同时,偶极散射波中包含了井孔周围地层非均质体的重要信息,偶极散射波的产生和能量差异可以作为识别地层非均匀性的依据。利用偶极散射波的上述优势,将该技术引入压裂效果评价,通过对比压裂前后散射波的能量差异评价远井处的压裂效果[26-27]

    利用仪器方位曲线将偶极四分量波形数据转换到地球坐标系下,对转换后的波形数据进行带通滤波及F-K滤波,消除测井中的随机噪声及来自层界面的反射干扰,得到滤波后的偶极声波测井数据,为了便于对比压裂前后偶极散射波能量的差异,利用偶极直达波幅度对滤波后的数据进行归一化处理,可得到归一化后的偶极声波测井数据:

    g(z,t)=ω(z,t)ω0 (2)

    式中:g(z,t)为归一化后的偶极声波测井数据;ω0为偶极直达波幅度;ω(z,t)为滤波后的偶极声波测井数据。

    对归一化后的偶极声波测井数据进行希尔伯特变换,得到其能量包络:

    A(z,t)=Hilbert{g(z,t)} (3)

    式中:A(z,t)为希尔伯特变换后的偶极声波数据能量包络;Hilbert{g(z,t)}为对归一化后的偶极声波测井数据g(z,t)进行希尔伯特变换。

    根据上述计算原理,先分别处理压裂前后的声波测井数据,获得压裂前后的能量包络,再分别计算每一井深处压裂前后的能量包络之差,即可获得压裂前后散射波能量的差异。

    8口压裂井采用上述技术进行了压裂效果评价,结果表明,纵波层析成像技术能够准确评价近井壁处水力裂缝的高度,偶极散射波技术能够评价远井处水力裂缝的展布情况,同时结合现场测试求产信息,验证了评价结果的有效性。下面以海上调整井X1井为例介绍其应用情况。

    为了完善注采井网、提高油田开发效果,在之前探井基础上部署了调整井X1井,主力目的层为沙河街组,储层孔隙度为12.9%~19.7%,渗透率为2.5~39.9 mD,属于中低孔、低渗储层,不进行储层改造难以形成工业油气流。因此,对该井沙河街组3 941.00~3 943.00 m井段进行了射孔压裂作业。

    采用声波各向异性反演技术和纵波层析成像技术处理X1井压裂前后的阵列声波测井数据,结果如图1所示。该井压裂井段在3 941.00~3 943.00 m,主要岩性为砂岩(如第8道所示)。其中,第3、4道为压裂前后横波时差的各向异性,可以看出压裂前后横波时差的各向异性没有明显差异,难以用其评价压裂效果。利用该技术评价压裂效果时,受水力裂缝缝网形态、地层相对于井眼的角度等因素的影响,存在较多的局限性,纵波层析成像技术能够较好地解决上述问题。储层压裂时井壁附近岩石产生大量的裂缝,会导致岩石纵波速度明显降低(与原状地层相比),岩石纵波速度降低越明显,波速变化率越大,说明压裂作业时岩石中产生的裂缝越多,岩石破碎程度越严重。纵波层析成像技术能够形象地刻画近井壁地层纵波速度的变化情况。因此,可以采用该技术评价近井壁储层的压裂效果。

    图  1  海上调整井X1井压裂前后各向异性及纵波层析成像成果
    Figure  1.  The anisotropy and P-wave tomography image for offshore adjustment Well X1 before and after fracturing

    图1中第6~8道由深红色到蓝色表示地层波速的变化率为0~20%,−2~2表示距离井壁2 m范围内的行速度成像。通过对比压裂前后纵波层析成像结果,3 932.20~3 946.00 m井段的径向速度剖面变化最为明显,说明该井段近井壁岩石受压裂作用发生了破碎,为主要压裂作用段,近井壁水力裂缝的高度约为13.80 m,其余井段径向速度剖面变化不明显,说明未受压裂作业影响。同时,相较于压裂前,压裂后的地层纵波时差在3 932.20~3 946.00 m井段明显增大,其余井段变化不明显,说明在压裂作业中该井段地层声波速度确实发生了变化,与纵波层析成像技术分析结果相吻合,说明利用纵波层析成像技术可以实现近井壁储层压裂效果的评价。纵波层析成像技术主要利用地层纵波评价压裂效果,然而地层纵波频率高、径向探测深度浅,不能判断地层深处的压裂效果。因此,该技术也存在一定的局限性。

    首先,利用偶极散射波技术分别分析X1井压裂区域和非压裂区域某一深度处的偶极波形数据,结果如图2所示。其中,图2(a)为非压裂区域井深3 925.00 m处压裂前后的偶极波形对比,图2(b)为压裂区域井深3 942.50 m处压裂前后的偶极波形对比。从图2可以看出,非压裂区域中压裂前后偶极波形吻合较好,无明显差异,说明非压裂区域并没有受到压裂作业影响;压裂区域压裂前后偶极波形中直达波吻合较好,随着时间增长,压裂后偶极波形波中出现明显的散射波(如图2(b)中蓝色框中所示),测井偶极声波中散射波的产生是由地层非均质性造成的[28],说明地层的非均质性是由压裂作业造成的。因此,通过对比压裂前后偶极散射波的能量可以评价储层压裂效果。

    图  2  压裂前和压裂后偶极波形对比
    Figure  2.  Comparison of dipole waveforms before and after fracturing

    对该井全井段压裂前后的偶极全波数据进行处理,结果如图3所示(第3道为压裂前后原始偶极全波波形,未归一化)。从图3可以看出,全井段压裂前后的原始偶极全波波形一致性较好,压裂后均未出现明显的偶极散射波;第4道为采用偶极散射波技术获得的压裂前后偶极散射波能量差异的成像,色标变化范围−8~20表示偶极散射波能量增长率为−8%到20%,0~14表示在距井壁14 m范围内的偶极散射波成像,深红色到蓝色表示压裂后偶极散射波能量与压裂前相比增长率为0~20%,径向探测深度为14.00 m。3 929.00~3 958.00 m井段压裂后的偶极散射波能量明显增强,说明受压裂作业影响,该井段远井处岩石被压开,地层非均质性增强,远井处沿井轴方向水力裂缝的高度约为29.00 m,水力裂缝径向延伸深度至少为14.00 m,其余井段压裂前后偶极散射波能量差异不明显,说明未受压裂作业影响。同时,对比第3道与第4道的处理结果,可以看出对原始波形能量进行归一化处理的必要性,显示了偶极散射波技术的优势。

    图  3  海上调整井X1井偶极散射波成像成果
    Figure  3.  Dipole scattering wave image of offshore adjustment Well X1

    分别采用纵波层析成像技术和偶极散射波技术对X1井进行分析,纵波层析成像技术显示裂缝发育井段为3 932.20~3 946.00 m(水力裂缝的高度约为13.80 m),偶极散射波技术显示裂缝发育井段为3 929.00~3 958.00 m(水力裂缝的高度约为29.00 m)。经分析,纵波层析成像技术主要反映的是地层直达纵波在近井壁1~2 m范围内的径向速度变化,偶极散射波技术主要反映的是偶极声源辐射散射波在远井数十米范围内因地层非均质性造成的能量变化,2种技术的分析对象不同,探测深度不同。

    将2种技术结合起来对X1井进行综合分析,结果见图4(第3道的深红色到蓝色表示地层波速的变化率为0~20%,−2~2表示距井壁2 m范围的速度成像;第4道色标范围为−8~20,表示偶极散射波能量增长率为−8%~20%,0~14表示距井壁14 m范围内的偶极散射波成像)。3 932.20~3 946.00 m井段受压裂施工影响,储层在近井壁和远井处沿井轴和径向均发生了破裂,其中水力裂缝在近井壁处沿井轴方向的高度约为13.80 m;同时,水力裂缝在远井处沿井轴和径向继续延伸,主要在3 929.00~3 958.00 m井段发育,裂缝高度约29.00 m,径向延伸距离至少为14.00 m。为进一步了解水力裂缝在远井处的发育情况,采用偶极横波远探测技术分析了压裂前后的声波测井资料,结果如图4中第5和第6道所示,3 929.00~3 958.00 m井段压裂有明显的强反射信息,表明压裂后至少在井眼周围14.00 m范围内微裂缝发育明显;井周裂缝形成的强反射和散射区域偶极散射波能量差异,表明井眼周围至少14.00 m范围内形成了明显的“压裂改造体积”,压裂效果较好。该井压裂前无求产,压裂后日产油量101.54 m3,投产初期日产油量为完井后配产的3.6倍。结合求产信息,进一步验证了纵波层析成像技术和偶极散射波技术对压裂效果的评价。

    图  4  海上调整井X1井储层压裂效果综合评价成果
    Figure  4.  Comprehensive evaluation results of reservoir fracturing effect in offshore adjustment Well X1

    1)纵波层析成像技术能够形象地刻画近井壁地层纵波速度的变化,偶极散射波中包含远井处水力裂缝导致的地层非均质性信息。因此,通过对比压裂前后地层纵波速度和偶极散射波能量的差异,可以评价储层水力裂缝的高度及空间展布情况。

    2)现场应用结果表明,纵波层析成像技术探测深度较浅,只能评价近井壁1~2 m范围内水力裂缝的高度;偶极散射波技术探测深度较深,可以评价井眼周围至少14.00 m范围内水力裂缝的发育情况,综合利用上述2种技术,通过“远近结合”方式,实现了对水力裂缝高度和径向延伸长度的评价。

    3)采用偶极散射波技术评价水力裂缝径向长度时,其径向探测深度受测井仪器类型、仪器采集时间和地层类型等因素影响会存在一定差异,目前常规阵列声波仪器的偶极散射波最远只能探测到井眼周围20~30 m,还无法评价该范围以外水力裂缝的径向延伸情况。

  • 图  1   直井、定向井垫斜和露头包裹示意

    Figure  1.   Vertical well, underlay for directional well, and packaged outcrop samples

    图  2   全直径包裹岩心水平井、垂直井和定向井示意

    Figure  2.   Full-diameter wrapped core for horizontal, vertical, and directional wells

    图  3   叠置地层水平井和直井压裂试样示意

    Figure  3.   Fracturing samples for horizontal and vertical wells in superimposed formations

    图  4   真三轴压裂物理模拟各类井筒示意

    Figure  4.   Various wellbores for physical simulation of true triaxial fracturing

    图  5   真三轴压裂系统示意

    Figure  5.   True triaxial fracturing system

    图  6   固化后的低熔点合金及重构的裂缝形态

    Figure  6.   Low melting point alloy and reconfigured fracture shapes after solidification

    图  7   标准岩心、全直径井下岩心和海相页岩试样压裂后CT扫描结果

    Figure  7.   CT scans of standard cores, full-diameter downhole cores, and marine shale samples after fracturing

    图  8   传感光纤在压裂整个时域的应变瀑布图和页岩露头压后裂缝形态

    Figure  8.   Strain waterfall diagram of sensing optical fiber in the entire fracturing time domain and fracture morphology of shale outcrop after fracturing

  • [1] 胡素云,赵文智,侯连华,等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发,2020,47(4):819–828. doi: 10.11698/PED.2020.04.19

    HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819–828. doi: 10.11698/PED.2020.04.19

    [2] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241. doi: 10.3969/j.issn.2096-1693.2019.03.021

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241. doi: 10.3969/j.issn.2096-1693.2019.03.021

    [3]

    ZHANG Qixing, HOU Bing, LIN Botao, et al. Integration of discrete fracture reconstruction and dual porosity/dual permeability models for gas production analysis in a deformable fractured shale reservoir[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104028. doi: 10.1016/j.jngse.2021.104028

    [4] 尹光志,李铭辉,许江,等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,2015,34(12):2436–2445.

    YIN Guangzhi, LI Minghui, XU Jiang, et al. A new multi-functional true triaxial fluid-solid coupling experiment system and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2436–2445.

    [5] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981,8(5):62–74.

    HUANG Rongzun. Initiation and propagation of hydraulic fracturing fractures[J]. Petroleum Exploration and Development, 1981, 8(5): 62–74.

    [6] 蒋海,肖阳,王栋,等. 页岩气体积改造人工缝网优化设计[J]. 特种油气藏,2022,29(5):154–160. doi: 10.3969/j.issn.1006-6535.2022.05.022

    JIANG Hai, XIAO Yang, WANG Dong, et al. Optimal design of artificial fracture network for shale gas volume stimulation[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 154–160. doi: 10.3969/j.issn.1006-6535.2022.05.022

    [7] 谢紫霄,黄中伟,熊建华,等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(4):63–72. doi: 10.3787/j.issn.1000-0976.2022.04.006

    XIE Zixiao, HUANG Zhongwei, XIONG Jianhua, et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 63–72. doi: 10.3787/j.issn.1000-0976.2022.04.006

    [8] 侯冰,陈勉,刁策,等. 砂泥交互储层定向井压裂裂缝穿层扩展真三轴实验研究[J]. 科学技术与工程,2015,15(26):54–59.

    HOU Bing, CHEN Mian, DIAO Ce, et al. True triaxial experimental study of hydraulic fracture penetrating sand and mud interbedding in deviated wellbore science[J]. Science Technology and Engineering, 2015, 15(26): 54–59.

    [9] 侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407–414.

    HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407–414.

    [10] 周健,陈勉,金衍,等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报,2007,28(5):109–113.

    ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109–113.

    [11] 王燚钊,侯冰,王栋,等. 页岩油多储集层穿层压裂缝高扩展特征[J]. 石油勘探与开发,2021,48(2):402–410. doi: 10.11698/PED.2021.02.17

    WANG Yizhao, HOU Bing, WANG Dong, et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(2): 402–410. doi: 10.11698/PED.2021.02.17

    [12] 侯冰,武安安,常智,等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报,2021,43(7):1322–1330. doi: 10.11779/CJGE202107018

    HOU Bing, WU Anan, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. doi: 10.11779/CJGE202107018

    [13] 侯冰,张儒鑫,刁策,等. 大斜度井水力压裂裂缝扩展模拟实验分析[J]. 中国海上油气,2016,28(5):85–91.

    HOU Bing, ZHANG Ruxin, DIAO Ce, et al. Experimental study on hydraulic fracture propagation in highly deviated wells[J]. China Offshore Oil and Gas, 2016, 28(5): 85–91.

    [14] 李润森. 干热岩储层压裂缝网形成力学机理及传热特性研究[D]. 西安: 西安石油大学, 2022.

    LI Runsen. Study on mechanism of fracture network forming during hydraulic fracturing and heat-transfer characteristic in hot dry rock reservoir[D]. Xi’an: Xi’an Shiyou University, 2022.

    [15] 柳贡慧,庞飞,陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版),2000,24(5):45–48.

    LIU Gonghui, PANG Fei, CHEN Zhixi. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum, China, 2000, 24(5): 45–48.

    [16] 侯冰,陈勉,李志猛,等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发,2014,41(6):763–768. doi: 10.11698/PED.2014.06.18

    HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18

    [17] 侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业,2014,34(12):81–86.

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86.

    [18] 郭天魁,刘晓强,顾启林. 射孔井水力压裂模拟实验相似准则推导[J]. 中国海上油气,2015,27(3):108–112.

    GUO Tiankui, LIU Xiaoqiang, GU Qilin. Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J]. China Offshore Oil and Gas, 2015, 27(3): 108–112.

    [19]

    ZHOU Dawei, ZHANG Guangqing, ZHAO Pengyun, et al. Effects of post-instability induced by supercritical CO2 phase change on fracture dynamic propagation[J]. Journal of Petroleum Science and Engineering, 2018, 162: 358–366. doi: 10.1016/j.petrol.2017.12.066

    [20] 付海峰,刘云志,梁天成,等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学,2016,27(12):2231–2236. doi: 10.11764/j.issn.1672-1926.2016.12.2231

    FU Haifeng, LIU Yunzhi, LIANG Tiancheng, et al. Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231–2236. doi: 10.11764/j.issn.1672-1926.2016.12.2231

    [21]

    KEAR J, WHITE J, BUNGER A P, et al. Three dimensional forms of closely-spaced hydraulic fractures[R]. ISRM-ICHF-2013-024, 2013.

    [22] 侯冰,戴一凡,范濛,等. 基于相场法的酸压裂缝连通孔洞数值模拟[J]. 石油学报,2022,43(6):849–859.

    HOU Bing, DAI Yifan, FAN Meng, et al. Numerical simulation of pores connection by acid fracturing based on phase field method[J]. Acta Petrolei Sinica, 2022, 43(6): 849–859.

    [23] 邱园. 煤层裂缝扩展模拟与完井方式优选[D]. 北京: 中国石油大学(北京), 2011.

    QIU Yuan. Simulation of coal seam crack propagation and optimization of completion methods[D]. Beijing: China University of Petroleum(Beijing), 2011.

    [24] 侯冰,陈勉,谭鹏,等. 页岩气藏缝网压裂物理模拟的声发射监测初探[J]. 中国石油大学学报(自然科学版),2015,39(1):66–71.

    HOU Bing, CHEN Mian, TAN Peng, et al. Monitoring of hydraulic fracture network by acoustic emission method in simulated tri-axial fracturing system of shale gas reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(1): 66–71.

    [25] 贾利春,陈勉,孙良田,等. 结合CT技术的火山岩水力裂缝延伸实验[J]. 石油勘探与开发,2013,40(3):377–380. doi: 10.11698/PED.2013.03.18

    JIA Lichun, CHEN Mian, SUN Liangtian, et al. Experimental study on propagation of hydraulic fracture in volcanic rocks using industrial CT technology[J]. Petroleum Exploration and Development, 2013, 40(3): 377–380. doi: 10.11698/PED.2013.03.18

    [26]

    HOU Bing, ZHANG Qixing, LIU Xing, et al. Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells[J]. Energy, 2022, 260: 124906. doi: 10.1016/j.energy.2022.124906

    [27] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.

    [28] 史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报,2021,6(1):92–113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    SHI Can, LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92–113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    [29]

    GU H, WENG X, LUND J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation[J]. SPE Production & Operations, 2012, 27(1): 20–26.

    [30] 侯冰,木哈达斯•叶尔甫拉提,付卫能,等. 页岩暂堵转向压裂水力裂缝扩展物模试验研究[J]. 辽宁石油化工大学学报,2020,40(4):98–104. doi: 10.3969/j.issn.1672-6952.2020.04.014

    HOU Bing, YEERFULATI Muhadasi, FU Weineng, et al. Experimental study on the hydraulic fracture propagation for shale temporary plugging and diverting fracturing[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2020, 40(4): 98–104. doi: 10.3969/j.issn.1672-6952.2020.04.014

    [31] 张旭,蒋廷学,贾长贵,等. 页岩气储层水力压裂物理模拟试验研究[J]. 石油钻探技术,2013,41(2):70–74. doi: 10.3969/j.issn.1001-0890.2013.02.014

    ZHANG Xu, JIANG Tingxue, JIA Changgui, et al. Physical simulation of hydraulic fracturing of shale gas reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70–74. doi: 10.3969/j.issn.1001-0890.2013.02.014

    [32] 曾义金,周俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1758–1766.

    ZENG Yijin, ZHOU Jun, WANG Haitao, et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1758–1766.

    [33]

    HOU Bing, ZHANG Ruxin, ZENG Yijin, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170: 231–243. doi: 10.1016/j.petrol.2018.06.060

    [34] 考佳玮,金衍,付卫能,等. 注液方式对深层页岩裂缝形态影响实验研究[J]. 地下空间与工程学报,2019,15(1):32–38.

    KAO Jiawei, JIN Yan, FU Weineng, et al. Experiments research on the influence of injection method on hydraulic fracture morphology of deep shale[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1): 32–38.

    [35]

    HOU Bing, CHANG Zhi, FU Weineng, et al. Fracture initiation and propagation in a deep shale gas reservoir subject to an alternating-fluid-injection hydraulic-fracturing treatment[J]. SPE Journal, 2019, 24(4): 1839–1855. doi: 10.2118/195571-PA

    [36]

    TAN Peng, JIN Yan, YUAN Liang, et al. Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations: An experimental investigation[J]. Petroleum Science, 2019, 16(1): 148–160. doi: 10.1007/s12182-018-0297-z

    [37] 赵金洲,付永强,王振华,等. 页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业,2022,42(2):11–19. doi: 10.3787/j.issn.1000-0976.2022.02.002

    ZHAO Jinzhou, FU Yongqiang, WANG Zhenhua, et al. Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry, 2022, 42(2): 11–19. doi: 10.3787/j.issn.1000-0976.2022.02.002

    [38] 卞晓冰,蒋廷学,贾长贵,等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业,2016,36(2):60–65.

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60–65.

    [39]

    ZHANG Qixing, HOU Bing, PANG Huiwen, et al. A comparison of shale gas fracturing based on deep and shallow shale reservoirs in the United States and China[J]. Computer Modeling in Engineering & Sciences, 2022, 133(3): 471–507.

    [40] 程万,金衍,陈勉,等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发,2014,41(3):336–340. doi: 10.11698/PED.2014.03.09

    CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3): 336–340. doi: 10.11698/PED.2014.03.09

    [41]

    RUNGAMORNRAT J, WHEELER M F, MEAR M E. A numerical technique for simulating nonplanar evolution of hydraulic fractures [R]. SPE 96968, 2005.

    [42] 赵金洲,王强,胡永全,等. 多孔眼裂缝竞争起裂与扩展数值模拟[J]. 天然气地球科学,2020,31(10):1343–1354.

    ZHAO Jinzhou, WANG Qiang, HU Yongquan, et al. Numerical simulation of multi-hole fracture competition initiation and propagation[J]. Natural Gas Geoscience, 2020, 31(10): 1343–1354.

    [43] 王士国,金衍,谭鹏,等. 煤系页岩储层多气共采水力裂缝扩展规律试验研究[J]. 岩土工程学报,2022,44(12):2290–2296. doi: 10.11779/CJGE202212016

    WANG Shiguo, JIN Yan, TAN Peng, et al. Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2290–2296. doi: 10.11779/CJGE202212016

    [44] 李连崇, 梁正召, 李根, 等. 水力压裂裂缝穿层及扭转扩展的三维模拟分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3208 − 3215.

    LI Lianchong, LIANG Zhengzhao, LI Gen, et al. Three-dimensional numerical analysis of traversing and twisted fractures in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 3208 − 3215.

    [45]

    SETTGAST R R, FU Pengcheng, WALSH S D C, et al. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(5): 627–653. doi: 10.1002/nag.2557

    [46] 曲占庆,田雨,李建雄,等. 水平井多段分簇压裂裂缝扩展形态数值模拟[J]. 中国石油大学学报(自然科学版),2017,41(1):102–109.

    QU Zhanqing, TIAN Yu, LI Jianxiong, et al. Numerical simulation study on fracture extension and morphology of multi-cluster staged fracturing for horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 102–109.

    [47] 周大伟,张广清,刘志斌,等. 致密砂岩多段分簇压裂中孔隙压力场对多裂缝扩展的影响[J]. 石油学报,2017,38(7):830–839. doi: 10.7623/syxb201707010

    ZHOU Dawei, ZHANG Guangqing, LIU Zhibin, et al. Influences of pore-pressure field on multi-fracture propagation during the multi-stage cluster fracturing of tight sandstone[J]. Acta Petrolei Sinica, 2017, 38(7): 830–839. doi: 10.7623/syxb201707010

    [48] 程万,蒋国盛,周治东,等. 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学,2018,39(12):4448–4456. doi: 10.16285/j.rsm.2017.2090

    CHENG Wan, JIANG Guosheng, ZHOU Zhidong, et al. Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well[J]. Rock and Soil Mechanics, 2018, 39(12): 4448–4456. doi: 10.16285/j.rsm.2017.2090

    [49] 时贤,程远方,常鑫,等. 页岩气水平井段内多簇裂缝同步扩展模型建立与应用[J]. 石油钻采工艺,2018,40(2):247–252. doi: 10.13639/j.odpt.2018.02.018

    SHI Xian, CHENG Yuanfang, CHANG Xin, et al. Establishment and application of the model for the synchronous propagation of multi-cluster fractures in the horizontal section of shale-gas horizontal well[J]. Oil Drilling & Production Technology, 2018, 40(2): 247–252. doi: 10.13639/j.odpt.2018.02.018

    [50]

    LU Qianli, LIU Zhuang, GUO Jianchun, et al. Numerical investigation of fracture interference effects on multi-fractures propagation in fractured shale[J]. Engineering Fracture Mechanics, 2023, 286: 109322. doi: 10.1016/j.engfracmech.2023.109322

    [51]

    LI Minghui, LV Wenjing, LIU Jinjun, et al. Effect of perforation friction on 3D in-stage multiple fracture propagation: A numerical study[J]. Engineering Fracture Mechanics, 2022, 267: 108415. doi: 10.1016/j.engfracmech.2022.108415

    [52] 王小华,罗浩然,张丰收. 水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[J]. 岩石力学与工程学报,2022,41(6):1223–1234.

    WANG Xiaohua, LUO Haoran, ZHANG Fengshou. Parameter optimization for controlling the complexity of near-wellbore fractures for perforated fracturing of horizontal wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1223–1234.

    [53] 侯冰,常智,武安安,等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报,2022,43(1):75–90.

    HOU Bing, CHANG Zhi, WU Anan, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar Sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75–90.

    [54] 王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111. doi: 10.11911/syztjs.2021091

    WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111. doi: 10.11911/syztjs.2021091

    [55] 唐煊赫,朱海燕,车明光,等. 裂缝性页岩暂堵压裂复杂裂缝扩展模型与暂堵时机[J]. 石油勘探与开发,2023,50(1):139–151. doi: 10.11698/PED.20221011

    TANG Xuanhe, ZHU Haiyan, CHE Mingguang, et al. Complex fracture propagation model and plugging timing optimization for temporary plugging fracturing in naturally fractured shale[J]. Petroleum Exploration and Development, 2023, 50(1): 139–151. doi: 10.11698/PED.20221011

    [56] 郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183. doi: 10.11911/syztjs.2023039

    GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances in temporary plugging and diversion fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183. doi: 10.11911/syztjs.2023039

    [57] 李彦超,张庆,沈建国,等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业,2022,42(2):143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015

    LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015

    [58] 伊西锋. 非常规油气水平井管内多级分段压裂新技术[J]. 石油机械,2014,42(4):62–66. doi: 10.3969/j.issn.1001-4578.2014.04.015

    YI Xifeng. New technology of multistage staged fracturing for unconventional oil-gas horizontal well[J]. China Petroleum Machinery, 2014, 42(4): 62–66. doi: 10.3969/j.issn.1001-4578.2014.04.015

    [59] 金智荣,孙悦铭,包敏新,等. 基于真三轴压裂物理模拟系统的暂堵压裂裂缝扩展规律试验研究[J]. 非常规油气,2021,8(6):98–105. doi: 10.19901/j.fcgyq.2021.06.14

    JIN Zhirong, SUN Yueming, BAO Minxin, et al. Experimental study on crack propagation law of temporary plugging fracturing based on true triaxial fracturing physical simulation system[J]. Unconventional Oil & Gas, 2021, 8(6): 98–105. doi: 10.19901/j.fcgyq.2021.06.14

    [60] 曹学军,王明贵,康杰,等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业,2019,39(7):81–87. doi: 10.3787/j.issn.1000-0976.2019.07.010

    CAO Xuejun, WANG Minggui, KANG Jie, et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81–87. doi: 10.3787/j.issn.1000-0976.2019.07.010

    [61] 陈钊,王天一,姜馨淳,等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业,2021,41(增刊1):158–163.

    CHEN Zhao, WANG Tianyi, JIANG Xinchun, et al. Numerical simulation study and pilot test of multi-cluster fracturing and temporary plugging technology in the horizontal hole section of shale-gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement1): 158–163.

    [62] 杨恒林,吕嘉昕,谭鹏,等. 基于三维扫描技术的页岩暂堵压裂物理模拟实验[J]. 断块油气田,2022,29(1):118–123.

    YANG Henglin, LYU Jiaxin, TAN Peng, et al. Physical simulation experiment on shale temporary plugging and fracturing based on 3D scanning technology[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 118–123.

    [63] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21.

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21.

    [64]

    HUANG Liuke, DONTSOV E, FU Haifeng, et al. Hydraulic fracture height growth in layered rocks: perspective from DEM simulation of different propagation regimes[J]. International Journal of Solids and Structures, 2022, 238: 111395. doi: 10.1016/j.ijsolstr.2021.111395

    [65]

    ZHANG Fengshou, HUANG Liuke, YANG Lin, et al. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation[J]. Petroleum Science, 2022, 19(1): 296–308. doi: 10.1016/j.petsci.2021.09.014

    [66]

    WANG Xiaohua, ZHANG Fengshou, YIN Zirui, et al. Numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs[J]. Petroleum Science, 2022, 19(5): 2210–2226. doi: 10.1016/j.petsci.2022.05.006

    [67] 张其星,侯冰,武安安,等. 昭通龙马溪组页岩坍塌风险分层研究与应用[J]. 钻井液与完井液,2023,40(3):279–288.

    ZHANG Qixing, HOU Bing, WU Anan, et al. Study and application on risk stratification of wellbore collapse for the Longmaxi Formation shale in Zhaotong City[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 279–288.

    [68] 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169.

    JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169.

    [69]

    XIONG Q, BRUDZINSKI M R, GOSSETT D, et al. Seismic magnitude clustering is prevalent in field and laboratory catalogs[J]. Nature Communications, 2023, 14(1): 2056. doi: 10.1038/s41467-023-37782-5

  • 期刊类型引用(22)

    1. 单海霞. 低黏高切合成基钻井液体系研究与应用. 能源化工. 2025(02): 41-46 . 百度学术
    2. 蒲文学,李伟,王宇飞,赵海滨,薄玉冰,林珂. 胜利页岩油牛页一区试验井组旋转导向钻井技术. 石油钻探技术. 2025(01): 24-30 . 本站查看
    3. 蒋廷学,沈子齐,王良军,齐自立,肖博,秦秋萍,范喜群,王勇,曲海. 考虑渗吸效应的页岩油井体积压裂用液强度优化方法——以南襄盆地泌阳凹陷X-1井为例. 石油勘探与开发. 2024(03): 588-596 . 百度学术
    4. 孙丙向,成海,毕研涛. 石油工程“四提”技术进展与攻关方向. 石油科技论坛. 2024(03): 85-94 . 百度学术
    5. JIANG Tingxue,SHEN Ziqi,WANG Liangjun,QI Zili,XIAO Bo,QIN Qiuping,FAN Xiqun,WANG Yong,QU Hai. Optimization method of fracturing fluid volume intensity for SRV fracturing technique in shale oil reservoir based on forced imbibition: A case study of well X-1 in Biyang Sag of Nanxiang Basin, China. Petroleum Exploration and Development. 2024(03): 674-683 . 必应学术
    6. 朱焕刚,赵鹏,公培斌,马永乾,段光辉,熊国庆. 旋转控制头泥浆收集装置研制. 西部探矿工程. 2024(10): 37-41 . 百度学术
    7. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    8. 张锦宏. 中国石化页岩油工程技术新进展. 油气藏评价与开发. 2023(01): 1-8 . 百度学术
    9. 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术. 石油钻探技术. 2023(01): 1-8 . 本站查看
    10. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 . 百度学术
    11. 郭同政,张晋言,柴婧,包博婷,孙建孟. 基于测录井资料计算页岩含油饱和度与气油比的方法. 石油钻探技术. 2023(03): 126-136 . 本站查看
    12. 王海斌. 牛庄洼陷页岩油大尺寸井眼优快钻井技术. 石油机械. 2023(07): 43-50 . 百度学术
    13. 杨雪山,窦正道,丁少华,赵进. 一趟钻关键技术在HY1-1HF井的研究与应用. 复杂油气藏. 2023(02): 149-153 . 百度学术
    14. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    15. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    16. 蒋廷学,肖博,沈子齐,刘学鹏,仲冠宇. 陆相页岩油气水平井穿层体积压裂技术. 石油钻探技术. 2023(05): 8-14+179 . 本站查看
    17. 肖新磊,席境阳,杜旭,王迎春. 胜利油田页岩油大井眼高效钻进技术研究与应用. 钻探工程. 2023(06): 122-128 . 百度学术
    18. 朱海燕,焦子曦,刘惠民,周广清,王建东,张潦源. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术. 天然气工业. 2023(11): 120-130 . 百度学术
    19. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    20. 张取胜. 水平井钻井完井关键技术研究. 石油和化工设备. 2022(04): 105-106+91 . 百度学术
    21. 李科,贾江鸿,于雷,李海斌. 页岩油钻井漏失机理及防漏堵漏技术. 钻井液与完井液. 2022(04): 446-450 . 百度学术
    22. 秦春,刘纯仁,陈文可,唐玉华,曹林云. 苏北盆地HY1HF井钻完井关键技术. 复杂油气藏. 2022(03): 17-23 . 百度学术

    其他类型引用(2)

图(8)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  115
  • PDF下载量:  125
  • 被引次数: 24
出版历程
  • 收稿日期:  2023-07-23
  • 修回日期:  2023-09-03
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回