考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究

张浩哲, 许争鸣, 邓智禄

张浩哲,许争鸣,邓智禄. 考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究[J]. 石油钻探技术,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
引用本文: 张浩哲,许争鸣,邓智禄. 考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究[J]. 石油钻探技术,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
Citation: ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057

考虑钻杆转速和偏心度耦合作用的环空摩擦压降CFD模拟及预测模型研究

基金项目: 国家自然科学基金项目“气体非平衡溶解对深井气侵井筒气–液两相流影响机制研究”(编号:52104009)资助。
详细信息
    作者简介:

    张浩哲(2001—),男,山东淄博人,2023年毕业于中国地质大学(北京)石油工程专业,北京大学在读博士研究生,主要从事油气井流体力学与工程方面的研究。E-mail: haozhezhang0607@foxmail.com。

    通讯作者:

    许争鸣,xuzm@cugb.edu.cn

  • 中图分类号: TE21

CFD Simulation and Prediction Model of Annular Frictional Pressure Drop with Combined Effects of Drillpipe Rotation Speed and Eccentricity

  • 摘要:

    深井钻井时,准确预测环空摩擦压降是保证井筒压力预测精度的关键,钻井液流速、钻杆转速及环空偏心度是影响环空摩擦压降的重要因素。为研究多种因素耦合作用下环空摩擦压降的变化规律,建立了水平井环空钻井液流动模型,对幂律流体在层流和湍流条件下的流动特性开展了数值模拟。模拟结果表明:层流状态下,偏心度和钻杆转速单独作用时,都会导致环空摩擦压降减小;偏心度和钻杆转速共同作用时,环空摩擦压降随偏心度先增大后减小,这与偏心环空中惯性效应对螺旋流的破坏作用有关。湍流状态下,钻杆转速对同心环空的摩擦压降几乎没有影响;偏心环空中,随着钻杆转速增大,不同偏心度下的环空摩擦压降值逐渐增加,且都逐渐趋近于同心环空摩擦压降。基于数值模拟数据,建立了层流和湍流条件下考虑钻杆转速和偏心度耦合作用的环空摩擦因子预测模型,该模型对模拟数据的最大拟合误差为9.18%,对试验数据的最大预测误差为8.33%。研究结果可为深井钻井时井筒压力控制和水力参数优化提供参考。

    Abstract:

    Accurate prediction of annular frictional pressure drop is the key to ensuring the accuracy of bottomhole pressure prediction during deep well drilling. The flow rate of the drilling fluid, drillpipe rotation speed, and the annular eccentricity are important factors affecting the annular frictional pressure drop. To investigate the change in annular frictional pressure drop with the combined effects of various factors, a drilling fluid flow model in the annulus of a horizontal well was developed, and the flow characteristics of power-law fluids under laminar and turbulent flow conditions were numerically investigated. The results show that: 1) under the laminar flow condition, annular frictional pressure drop decreases when the eccentricity or the drillpipe rotation speed increases separately. However, when these two parameters increase simultaneously, the annular frictional pressure drop increases first and then decreases as eccentricity increases. This is due to the destruction of helical flow by the inertia effect in the eccentric annulus. 2) Under the turbulent flow condition, drillpipe rotation speed has almost no effects on the frictional pressure drop in the concentric annulus. In the eccentric annulus, with the drillpipe rotation speed increasing, the frictional pressure drop under different eccentricities increases gradually and converges to the frictional pressure drop in the concentric annulus. Based on the numerical simulation data, the prediction model for annular frictional coefficient with the combined effects of drillpipe rotation speed and eccentricity under laminar and turbulent flow conditions are developed. The maximum fitting error of the model to the simulated data is 9.18%, and the prediction error for experimental data is no more than 8.33%. The results of this study could provide reference for wellbore pressure control and hydraulic parameter optimization during deep well drilling.

  • 常用钻井液润滑剂一般分为固体和液体2类[1-3]。与液体润滑剂相比,惰性固体润滑剂影响固相控制,且难以降解,易伤害储层和污染环境。液体润滑剂按照其主要成分,可分为矿物油、聚α–烯烃、脂肪酸酯、磷酸酯和烷基糖苷等类别[4-13]。其中,矿物油类润滑剂耐温、耐盐性能较好,但生物降解性差、荧光级别高、毒性大;其他液体润滑剂虽然毒性低,但在高温下易水解、起泡及影响钻井液的流变性。目前,国内深层水平井在应用水基钻井液钻井时,通常加入5.0%~12.0%的原油,以降低摩阻和扭矩、减少卡钻等井下故障[14]。然而,原油不但会对录井的准确度造成影响,而且废弃混油钻井液后期处理困难、环境污染风险高。因此,研制满足环保要求且无荧光的耐温钻井液润滑剂具有重要意义。合成脂肪酸酯类环保型液体润滑剂因兼具优异的润滑性、环保性、热氧化稳定性、水解稳定性和较好的低温流动性,并能通过分子结构优化进一步改善其性能,因此日益受到重视[15-19]。尽管合成酯类润滑剂具有优异的综合性能,但其成本高,耐温性能也不够好,限制了其推广应用[20]。为此,笔者以工业废弃植物油中的脂肪酸为主要原料,研制了耐温且环保的合成脂肪酸酯类钻井液环保润滑剂SMLUB-E[21],在降低成本的同时,可克服现有润滑剂耐温性与环保性无法兼顾的不足,在缓解环保压力的同时,解决复杂结构井钻井过程中井下摩阻大的技术难题。

    环保润滑剂应同时满足毒性低和润滑性良好的要求,因此,设计思路为:1)分子结构中不应含有多环芳烃类物质,以降低对环境的污染程度和荧光含量;2)应选用易于降解的天然脂肪酸类和醇类作为原料,以提高环保性和生物降解性;3)应具有双亲结构,其中亲水基团使润滑剂能够在金属表面牢固吸附并形成稳定的润滑膜,而疏水基团不仅会降低接触面间的摩擦阻力,而且会决定润滑膜的厚度和强度,使润滑膜在受到较大载荷时不易被破坏;4)应含有能与金属结合形成极压膜的极压元素,以提高极压润滑性能;5)为提高抗温能力和抗盐能力,优选合适相对分子质量的有机物为基础物,且其分子结构中的极性吸附基团不能与钙、镁离子反应,以免引起破乳,导致其润滑能力降低。

    以天然脂肪酸(工业废弃植物油中的脂肪酸)、有机多元醇等为基础原料,合成环保润滑剂SMLUB-E。具体合成步骤:1)合成出含不饱和化学键与活性反应基的聚合酯;2)对合成的聚合酯进行改性反应,引入极压元素与强吸附基团;3)在改性聚合酯上引入极性较大的基团。最终制得黄褐色透明液体润滑剂SMLUB-E,其分子结构如图1所示。

    图  1  SULUB-E的分子结构示意
    Figure  1.  Molecular structure of SULUB-E

    参照中国石化企业标准《水基钻井液用润滑剂技术要求》(Q/SHCG 4—2011)中的技术指标与试验方法,评价了润滑剂SMLUB-E的润滑性。

    1)润滑性试验。采用FANN 21200型极压润滑仪,测试了5.0%膨润土浆中加入1.0%SMLUB-E后的摩阻系数,并与加入原油后的摩阻系数进行了对比(试验条件为160 ℃温度下老化16 h),结果如图2所示。

    图  2  膨润土浆中分别加入SMLUB-E与原油后的摩阻系数
    Figure  2.  Friction coefficient of bentonite mud after adding SMLUB-E and crude oil respectively

    图2可以看出:在160 ℃下老化16 h后,膨润土浆的摩阻系数高达0.47;加入1.0% SMLUB-E后,摩阻系数显著降低(降至0.05),表现出较好的润滑性能;膨润土浆中加入8.0%原油后,摩阻系数同样降至0.05,说明加入原油也能够起到良好的润滑作用。但由于原油无法在水中分散,钻井液中混入原油时通常需要同时加入0.2%~0.5%的水包油型乳化剂(如OP-10)对原油进行乳化,提高其在钻井液中的分散性,否则很容易被固相控制设备筛除,增大消耗量。然而,原油与0.5%乳化剂OP-10形成乳化原油后,其润滑效果显著降低,膨润土浆中加入8.0%乳化原油,其摩阻系数仅为0.19。其原因是:一方面,原油乳化后大部分原油油滴被乳化剂分子包裹,丧失了疏水性;另一方面,由于乳化剂分子亲水端的极性高于原油,因此优先在金属表面吸附,导致原油油滴在金属表面的吸附量降低。

    2)极压膜强度试验。SMLUB-E除了通过极性基团的物理吸附和化学吸附在金属表面形成一层润滑膜外,在受到较大压力的摩擦时,极压元素还可与金属作用形成极压膜。因此,当钻具表面受到高温和高载荷作用时,润滑膜不易被破坏。用FANN 21200型极压润滑仪对SMLUB-E形成的极压膜强度进行了评价,并与8.0%乳化原油(成分同上)进行了对比,结果见表1

    表  1  SMLUB-E形成的极压膜强度
    Table  1.  Strength of extreme pressure film formed by SMLUB-E
    负载扭矩/
    (N·m)
    极压润滑仪表盘读数
    5.0%膨润土浆+
    8.0%乳化原油
    5.0%膨润土浆+
    1.0% SMLUB-E
    5.622 6
    11.33810
    16.95414
    22.66218
    28.2咬合21
    33.524
    39.526
    45.230
    50.8咬合
    下载: 导出CSV 
    | 显示表格

    表1可以看出,当FANN 21200型极压润滑仪的负载扭矩达到28.2 N·m时,加入8.0%乳化原油膨润土浆中的滑块和滑环之间即会咬合;而加入1.0% SMLUB-E膨润土浆中的滑块与滑环的负载扭矩达到50.8 N·m时才会咬合,说明SMLUB-E形成的极压膜具有较高的强度,在受到较高负载时也不易被破坏。

    聚磺钻井液中加入2.0%的SMLUB-E,在160 ℃下老化16 h后,分别采用FANN 21200型极压润滑仪和NZ-3型滤饼黏滞系数测定仪,测试其摩阻系数与滤饼黏滞系数,考察聚磺钻井液加入SMLUB-E后的润滑性,并与其加入原油和乳化原油后的润滑性进行了对比,结果如图3所示。聚磺钻井液的配方为3.0%膨润土+0.3%PAC-LV+0.2%PFL-H+3.0%SPNH+2.0%SMC+0.2% NaOH+加重剂BaSO4,密度为1.30 kg/L,pH值为9.5,下同;乳化原油成分同上。

    图  3  SMLUB-E与原油在聚磺钻井液中的润滑效果对比
    Figure  3.  Comparison of lubricating effect between SMLUB-E and crude oil in polysulfide drilling fluid

    图3可以看出,聚磺钻井液的摩阻系数为0.31,加入2.0% SMLUB-E和8.0%原油后,其摩阻系数分别降至0.08和0.19,说明SMLUB-E在聚磺钻井液中的润滑效果要优于原油;而加入8.0%乳化原油后,摩阻系数仅降至0.24,其降低幅度低于原油。这一方面是因为极性相对较强的磺化处理剂(SPNH和SMC)在金属表面优先吸附,从而阻碍了原油的吸附;另一方面可能是由于磺化处理剂能够在一定程度上乳化原油。此外,由图3还可以看出,无论是SMLUB-E还是原油均能够显著降低滤饼黏滞系数。

    在5.0%膨润土浆中加入1.0% SMLUB-E,在不同温度下老化16 h后,测定其摩阻系数,以考察SMLUB-E的耐温性,结果如图4所示。

    图  4  加入SMLUB-E的膨润土浆在不同温度下老化后的摩阻系数
    Figure  4.  Post-aging friction coefficient of bentonite mud with SMLUB-E at different temperatures

    图4可以看出,随着老化温度从100 ℃升高至160 ℃,膨润土浆摩阻系数变化幅度不大,始终保持在0.04~0.05,说明SMLUB-E在高温下具有较好的润滑性,耐温可达160 ℃。

    通过改变SMLUB-E的加量,评价了SMLUB-E对膨润土浆和聚磺钻井液流变性和滤失性的影响程度,结果见表2。试验条件为160 ℃下老化16 h。

    表  2  SMLUB-E对膨润土浆和聚磺钻井液流变性和滤失性的影响
    Table  2.  Influence of SMLUB-E on rheological and filtration properties of bentonite mud and polysulfide drilling fluid
    试验浆体表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    API滤失量/mL
    5.0%膨润土浆(A) 8.5 4.0 4.525.0
    A+1.0% SMLUB-E 8.5 4.0 4.520.0
    A+1.5% SMLUB-E 9.0 5.0 4.017.0
    A+2.0% SMLUB-E 8.5 4.0 4.517.0
    聚磺钻井液(B)43.532.011.5 5.2
    B+1.0% SMLUB-E52.540.012.5 4.2
    B+1.5% SMLUB-E50.038.012.0 4.0
    B+2.0% SMLUB-E52.540.012.5 4.0
    下载: 导出CSV 
    | 显示表格

    表2可以看出,无论是膨润土浆还是聚磺钻井液,随着SMLUB-E加量增大,其黏度和切力变化不大,滤失量略有降低。这说明SMLUB-E不会对钻井液的流变性造成不利影响,而且能提高其滤失造壁性。

    参照国标《生活饮用水标准检验方法》(GB/T 5750—2006)、《水质:苯并(α)芘的测定:乙酰化滤纸层析荧光分光光度法》(GB/T 11895—1989)和《海洋石油勘探开发污染物生物毒性》(GB18420.1—2009)等,测定了环保润滑剂SMLUB-E的重金属含量、生物毒性等环保性能。测试结果为:

    1)SMLUB-E中苯并芘含量小于1.0 mg/L,重金属汞、镉、总铬、砷和铅的含量均小于0.001 mg/L,都远小于标准限值,可近似认为SMLUB-E中不含重金属。

    2)SMLUB-E的96 h半数致死浓度(LC50)高达58 300 mg/L,超过海上油田废弃钻井液的一级排放标准(LC50=30 000 mg/L),属于无毒油田化学剂(LC50>20 000 g/mL)。

    环保性能测试结果表明,SMLUB-E具有很好的环保性能,不会对生态环境造成大的影响。

    环保润滑剂SMLUB-E目前已在塔河油田TP154XCH井、TP238CH井和中良1CX井等深井进行了现场应用,定向钻进过程中未出现托压、卡钻等井下故障,起下钻顺畅。下面以TP238CH井为例,介绍SMLUB-E的具体应用情况。

    TP238CH井为两级井身结构侧钻水平井,套管内开窗侧钻,侧钻点选择在奥陶系桑塔木组地层,完钻层位为奥陶系一间房组。侧钻点井深6 236.00 m,设计完钻井深6 698.81 m,实际钻至井深6 537.48 m(垂深6 435.56 m)时因发生失返性漏失提前完钻,完钻井斜角88.5°,水平位移137.19 m。该井造斜段狗腿度较大,最大井眼曲率达到21.0°/30m,钻具受到较高的弯曲载荷,同时小井眼(ϕ120.7 mm井眼)非常容易形成岩屑床,均会导致产生较大的井下摩阻,要求钻井液具有良好的润滑降摩性能。

    以往塔河油田的定向井、水平井普遍采用聚磺混油钻井液钻进。为了缓解日益增大的环保压力,TP238CH井采用了以SMLUB-E为核心处理剂的不混油低摩阻钻井液SMO-FREE,基本配方为3.0%~4.0%膨润土+0.1%~0.2%提切降滤失剂SMVIS-1+0.2%~0.3%增黏降滤失剂SMVIS-2+2.0%~3.0% SMP-2+2.0%~3.0% SMC+1.0%~2.0%镶嵌成膜防塌剂SMNA-1+1.0%~2.0%SMLUB-E+加重剂BaSO4,密度为1.19~1.30 kg/L,pH值为9~10。

    TP238CH井钻进中的钻井液摩阻系数和滤饼黏滞系数随SMLUB-E加量的变化见表3

    表  3  钻井过程中钻井液润滑性的变化
    Table  3.  Lubricity changes of drilling fluid during drilling operation
    开次井深/mSMLUB-E加量,%摩阻系数滤饼黏滞系数
    一开6 239.000 0.330.140 5
    6 250.000 0.320.140 5
    6 263.000.250.300.052 4
    6 273.000.800.270.052 4
    6 304.001.300.220.052 4
    6 335.001.800.180.043 7
    6 396.002.000.140.043 7
    6 461.002.000.140.043 7
    二开6 467.002.000.130.043 7
    6 497.002.200.120.043 7
    6 531.002.200.120.043 7
    下载: 导出CSV 
    | 显示表格

    表3可以看出,TP238CH 井钻进中的钻井液未加入SMLUB-E时的润滑性较差,摩阻系数高达0.33,滤饼黏滞系数高达0.140 5;当加入0.25% SMLUB-E后,滤饼黏滞系数大幅降低(降至0.052 4),但摩阻系数的降低幅度很小,仅从0.33降至0.30,这说明加入0.25%SMLUB-E并不能有效改善钻井液的润滑性。随井斜角增大,SMLUB-E的加量从0.25%逐渐提高至2.20%,滤饼黏滞系数趋于稳定,始终保持在0.043 7~0.052 4,而摩阻系数从0.30逐步降至0.12,说明SMLUB-E能够增强钻井液的润滑性能。

    TP238CH井钻井过程中,摩阻随井深和井斜角的变化情况如图5所示。

    图  5  摩阻随井深与井斜角的变化
    Figure  5.  Frictional resistance changes with the depth and deviation of the well

    图5可以看出,一开从井深6 236.00 m钻至井深6 264.00 m的过程中,井斜角从1.9°增大到9.6°,此阶段由于钻井液中未加入润滑剂SMLUB-E,摩阻从初始的400 kN逐渐增大到800 kN;加入0.80%SMLUB-E后,从井深6 264.00 m钻至井深6 287.00 m的过程中,摩阻降至600 kN左右,钻至井深6 304.00 m时,随着井斜角进一步增大至22°,摩阻又开始呈现增大趋势,增大至800 kN,说明此时0.8%的SMLUB-E已不足以控制摩阻;将SMLUB-E加量提至1.8%以后,摩阻随即降至400 kN;从井深6 395.00 m钻至井深6 461.00 m的过程中,再少量补充SMLUB-E并将其加量控制在2.0%,随着井斜角从33.5°逐渐增大到60.0°,摩阻也较好地控制在500~600 kN。二开从井深6 461.00 m开始钻进,由于已用套管封隔了上部井段的井壁,开始阶段的摩阻相比一开完钻时甚至略有降低。继续少量补充SMLUB-E并控制其加量在2.2%左右,直至钻至完钻井深摩阻都较好地控制在400~600 kN。

    通过分析TP238CH井钻井过程中的摩阻变化情况可知,当钻井液中环保润滑剂SMLUB-E的加量保持在2.0%左右时,能够将摩阻控制在较低值,相比采用传统混油钻井液的水平井摩阻(80~100 kN)降低约30%以上,证明SMLUB-E具有优异的润滑性能。

    1)选用工业废植物油中的脂肪酸、有机多元醇等作为基础原料,合成了钻井液环保润滑剂SMLUB-E。

    2)室内试验分析表明,SMLUB-E在水基钻井液中具有良好的润滑效果,润滑膜强度高,耐温160 ℃,不含重金属,无毒,环保性能好。

    3)以SMLUB-E为核心处理剂的不混油低摩阻钻井液SMO-FREE,在塔河油田深层水平井定向钻进时进行了应用,未出现托压、卡钻等井下故障。现场应用表明,当钻井液中SMLUB-E加量保持在2.0%左右时,井下摩阻能够控制在400~600 kN,表现出良好的润滑降摩阻性能。

  • 图  1   水平井筒环空模型及横截面网格划分示意

    Figure  1.   Horizontal wellbore annulus model and cross-section meshing

    图  2   单位长度环空摩擦压降与总网格数的关系曲线

    Figure  2.   Relationship between annular frictional pressure drop per unit length and total mesh number

    图  3   模型验证结果

    Figure  3.   Model validation results

    图  4   钻杆不旋转时不同入口速度下单位长度环空摩擦压降随偏心度的变化

    Figure  4.   Variation of annular frictional pressure drop per unit length with eccentricity at different inlet velocities when drillpipe is not rotating

    图  5   钻杆不旋转时不同偏心度条件下的环空出口钻井液速度云图

    Figure  5.   Velocity contours of drilling fluid at annulus outlet with dfferent eccentricities when the drillpipe is not rotating

    图  6   同心环空(e=0)中不同入口速度下单位长度环空摩擦压降随钻杆转速的变化

    Figure  6.   Variation of annular frictional pressure drop per unit length with drillpipe rotation speed at different inlet velocities in a concentric annulus (e=0)

    图  7   同心环空(e=0)中不同钻杆转速下的钻井液表观黏度

    Figure  7.   Apparent viscosity of drilling fluid under different drillpipe rotation speeds in a concentric annulus (e=0)

    图  8   层流下不同钻杆转速时单位长度环空摩擦压降随偏心度的变化

    Figure  8.   Variation of annular frictional pressure drop per unit length with eccentricity at different drillpipe rotation speeds under laminar flow condition

    图  9   层流状态下钻杆旋转时同心环空与偏心环空中流体流线对比

    Figure  9.   Comparison of fluid streamline between concentric annulus and eccentric annulus during drillpipe rotation under laminar flow condition

    图  10   湍流状态下不同入口速度时环空摩擦压降随偏心度的变化曲线

    Figure  10.   Change curve of annular frictional pressure drop with eccentricity at different inlet velocities under turbulent flow condition

    图  11   环空中层流和湍流状态下出口处钻井液速度分布

    Figure  11.   Velocity distribution of drilling fluid at the outlet under laminar and turbulent flow conditions in the annulus

    图  12   湍流状态下不同入口速度时同心环空摩擦压降随钻杆转速的变化曲线

    Figure  12.   Change curve of concentric annular frictional pressure drop with drillpipe rotation speed at different inlet velocities under turbulent flow condition

    图  13   湍流状态下不同偏心度条件下单位长度环空摩擦压降随钻杆转速的变化

    Figure  13.   Variation of annular frictional pressure drop per unit length with drillpipe rotation speed under different eccentricity conditions and turbulent flow condition

    图  14   层流状态下钻杆不旋转时摩擦因子随偏心度的变化

    Figure  14.   Variation of frictional coefficient with eccentricity when drillpipe is not rotating under laminar flow condition

    图  15   层流状态下钻杆旋转时摩擦因子随泰勒数的变化

    Figure  15.   Variation of frictional coefficient with Taylor number when drillpipe is rotating under laminar flow condition

    图  16   湍流状态下钻杆不旋转时雷诺数与摩擦因子之间的关系

    Figure  16.   Relationship between Reynolds number and frictional coefficient when drillpipe is not rotating under turbulent flow condition

    图  17   湍流状态下钻杆旋转时泰勒数与摩擦因子之间的关系

    Figure  17.   Relationship between Taylor number and frictional coefficient when drillpipe is rotating under turbulent flow condition

    图  18   层流和湍流情况下摩擦因子预测值与模拟值的对比

    Figure  18.   Comparison between simulated and predicted frictional coefficients under laminar and turbulent flow conditions

    图  19   层流和湍流情况下环空摩擦压降预测值与试验数据的对比

    Figure  19.   Comparison between experimented and predicted annular frictional pressure drop under laminar and turbulent flow conditions

    表  1   网格无关性分析结果

    Table  1   Mesh independence analysis

    网格划分
    方案
    网格数总网格数单位长度环空摩擦
    压降/(Pa·m−1
    轴向径向周向
    118082434 560759.77
    2240103276 800730.67
    33601040144 000720.51
    44801648368 640719.56
    55002052520 000718.78
    下载: 导出CSV

    表  2   数值模拟方案

    Table  2   Scheme of numerical simulation

    稠度系数/
    (Pa·sn
    流性指数入口速度/
    (m·s−1
    偏心度钻杆转速/
    (r·min−1
    0.100.50层流:0.10, 0.15,
    0.20, 0.25, 0.30
    湍流:1.00, 1.20,
    1.40, 1.60, 1.80
    0, 0.2, 0.4,
    0.6, 0.8
    0, 50, 100, 150
    2.100.38层流:1.00
    湍流:4.00
    0.40, 100
    0.830.56
    0.370.59
    0.250.61
    下载: 导出CSV

    表  3   偏心度与公式(16)中a1a2的关系

    Table  3   The relationship between Reynolds number and a1, a2 in Eq. 16

    ea1a2
    00.08017−1.00121
    0.20.07819−0.99010
    0.40.07179−0.96671
    0.60.06114−0.97408
    0.80.05223−0.97522
    下载: 导出CSV

    表  4   R.M.Ahmed等人和M.Sorgun等人在试验中的环空尺寸及钻井液流变性参数

    Table  4   Annulus dimensions and rheological properties of drilling fluids in experiments of R.M.Ahmed and M.Sorgun

    数据来源环空尺寸偏心度钻杆转速/(r·min−1入口速度/(m·s−1钻井液流变性参数
    外径/mm内径/mm稠度系数/(Pa·sn流性指数
    R. M. Ahmed等人[3]38.012.70.10, 50, 100, 1500.44, 1.030.2500.610
    M. Sorgun等人[33]74.045.71.002.85, 3.08, 3.32, 3.560.2890.514
    下载: 导出CSV
  • [1] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [2] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.

    [3] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20.

    YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.

    [4]

    AHMED R M, MISKA S Z. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[R]. SPE 112604, 2008.

    [5]

    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. Equivalent circulating density modeling of Yield Power Law fluids validated with CFD approach[J]. Journal of Petroleum Science and Engineering, 2016, 140: 16–27. doi: 10.1016/j.petrol.2015.12.027

    [6] 赵岩. 非牛顿流体偏心环空螺旋流的CFD模拟[D]. 杭州: 中国计量大学, 2017.

    ZHAO Yan. Non-Newtonian fluid in eccentric annulus helical flow field of the CFD simulation[D]. Hangzhou: China Jiliang University, 2017.

    [7] 蔡萌. 幂律流体偏心环空螺旋流压力梯度的数值计算[J]. 石油钻采工艺,2010,32(2):11–14.

    CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling & Production Technology, 2010, 32(2): 11–14.

    [8]

    MCCANN R C, QUIGLEY M S, ZAMORA M, et al. Effects of high-speed pipe rotation on pressures in narrow annuli[J]. SPE Drilling & Completion, 1995, 10(2): 96–103.

    [9]

    KELESSIDIS V C, MAGLIONE R, TSAMANTAKI C, et al. Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J]. Journal of Petroleum Science and Engineering, 2006, 53(3/4): 203–224.

    [10]

    PILEHVARI A, SERTH R. Generalized hydraulic calculation method for axial flow of non-Newtonian fluids in eccentric annuli[J]. SPE Drilling & Completion, 2009, 24(4): 553–563.

    [11]

    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. The effects of drillstring-eccentricity, -rotation, and -buckling configurations on annular frictional pressure losses while circulating yield-power-law fluids[J]. SPE Drilling & Completion, 2015, 30(3): 257–271.

    [12]

    SORGUN M, OZBAYOGLU M E, AYDIN I. Modeling and experimental study of Newtonian fluid flow in annulus[J]. Journal of Energy Resources Technology, 2010, 132(3): 033102. doi: 10.1115/1.4002243

    [13]

    FOUNARGIOTAKIS K, KELESSIDIS V C, MAGLIONE R. Laminar, transitional and turbulent flow of Herschel–Bulkley fluids in concentric annulus[J]. The Canadian Journal of Chemical Engineering, 2008, 86(4): 676–683. doi: 10.1002/cjce.20074

    [14]

    SAASEN A. Annular frictional pressure losses during drilling—predicting the effect of drillstring rotation[J]. Journal of Energy Resources Technology, 2014, 136(3): 034501. doi: 10.1115/1.4026205

    [15] 贺成才. 幂律流体同心环空螺旋流数值模拟[J]. 钻井液与完井液,2002,19(4):7–9.

    HE Chengcai. Numerical modeling of the power-law fluid in a helical flow[J]. Drilling Fluid & Completion Fluid, 2002, 19(4): 7–9.

    [16]

    NOURI J M, WHITELAW J H. Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder[J]. International Journal of Heat and Fluid Flow, 1997, 18(2): 236–246. doi: 10.1016/S0142-727X(96)00086-0

    [17]

    FERROUDJI H, HADJADJ A, HADDAD A, et al. Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 3091–3101. doi: 10.1007/s13202-019-0706-x

    [18]

    SALUBI V, MAHON R, OLUYEMI G. The combined effect of fluid rheology, inner pipe rotation and eccentricity on the flow of Newtonian and non-Newtonian fluid through the annuli[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110018. doi: 10.1016/j.petrol.2021.110018

    [19]

    COLEMAN B D, NOLL W. Helical flow of general fluids[J]. Journal of Applied Physics, 1959, 30(10): 1508–1512. doi: 10.1063/1.1734990

    [20]

    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[J]. Journal of Canadian Petroleum Technology, 2010, 49(12): 57–64. doi: 10.2118/141518-PA

    [21] 翟科军,于洋,何浪,等. 幂律流体螺旋层流流动压降简化模型[J]. 石油机械,2020,48(10):10–15.

    ZHAI Kejun, YU Yang, HE Lang, et al. Simplified pressure drop model for laminar helical flow of power law fluid[J]. China Petroleum Machinery, 2020, 48(10): 10–15.

    [22]

    SAYINDLA S, LUND B, YTREHUS J D, et al. CFD modeling of hydraulic behavior of oil- and water-based drilling fluids in laminar flow[J]. SPE Drilling & Completion, 2019, 34(3): 207–215.

    [23] 张晋凯,李根生,黄中伟,等. 不同偏心度的环空涡动流场特性[J]. 石油钻采工艺,2016,38(2):133–137.

    ZHANG Jinkai, LI Gensheng, HUANG Zhongwei, et al. Features of vortex flow fields in annuluses with different eccentricities[J]. Oil Drilling & Production Technology, 2016, 38(2): 133–137.

    [24]

    HACIISLAMOGLU M, LANGLINAIS J. Non-Newtonian flow in eccentric annuli[J]. Journal of Energy Resources Technology, 1990, 112(3): 163–169. doi: 10.1115/1.2905753

    [25] 王常斌,陈皖,田迪,等. 幂律流体偏心环空流场的CFD模拟[J]. 钻井液与完井液,2009,26(3):62–64.

    WANG Changbin, CHEN Wan, TIAN Di, et al. A CFD simulation of the flow field of a power law fluid in an eccentric annulus[J]. Drilling Fluid & Completion Fluid, 2009, 26(3): 62–64.

    [26] 蒋世全. 牛顿流体条件下偏心环空间隙雷诺数及层流区域方程研究[J]. 中国海上油气,2007,19(6):398–401.

    JIANG Shiquan. The study of eccentric annular clearance Reynolds number and laminar flow area equation under Newtonian fluid condition[J]. China Offshore Oil and Gas, 2007, 19(6): 398–401.

    [27]

    PATEL D. Modification of generalized hydraulic calculation method for non-Newtonian fluids in eccentric annuli[D]. Kingsville, Texas: Texas A & M University-Kingsville, 2006.

    [28]

    DOKHANI V, MA Yue, LI Zili, et al. Effects of drill string eccentricity on frictional pressure losses in annuli[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106853. doi: 10.1016/j.petrol.2019.106853

    [29]

    SULTAN R A, RAHMAN M A, RUSHD S, et al. CFD analysis of pressure losses and deposition velocities in horizontal annuli[J]. International Journal of Chemical Engineering, 2019, 2019: 7068989.

    [30] 宋先知,李根生,王梦抒,等. 连续油管钻水平井岩屑运移规律数值模拟[J]. 石油钻探技术,2014,42(2):28–32.

    SONG Xianzhi, LI Gensheng, WANG Mengshu, et al. Numerical simulation on cuttings carrying regularity for horizontal wells drilled with coiled tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28–32.

    [31]

    MADLENER K, FREY B, CIEZKI H. Generalized Reynolds number for non-Newtonian fluids[J]. Progress in Propulsion Physics, 2009, 1: 237–250.

    [32]

    AYENI K, OSISANYA S O. Evaluation of commonly used fluid rheological models using developed drilling hydraulic simulator[R]. PETSOC−2004−039, 2004.

    [33]

    VIEIRA NETO J L, MARTINS A L, ATAÍDE C H, et al. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli[J]. Brazilian Journal of Chemical Engineering, 2014, 31(4): 829–838. doi: 10.1590/0104-6632.20140314s00002871

    [34]

    SORGUN M, OZBAYOGLU M E. Predicting frictional pressure loss during horizontal drilling for non-Newtonian fluids[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(7): 631–640. doi: 10.1080/15567030903226264

  • 期刊类型引用(17)

    1. 蒲文学,李伟,王宇飞,赵海滨,薄玉冰,林珂. 胜利页岩油牛页一区试验井组旋转导向钻井技术. 石油钻探技术. 2025(01): 24-30 . 本站查看
    2. 刘士林,张鹏飞,邱贻博,冯建伟,刘水珍. 博兴洼陷沙四段上亚段—沙三段下亚段地应力特征. 油气地质与采收率. 2025(02): 36-50 . 百度学术
    3. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 . 百度学术
    4. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    5. 张锦宏. 中国石化页岩油工程技术新进展. 油气藏评价与开发. 2023(01): 1-8 . 百度学术
    6. 李志明,孙中良,黎茂稳,曹婷婷,李政,刘鹏,蒋启贵,钱门辉,陶国亮. 济阳坳陷第一轮页岩油探井“失利”原因剖析. 地球科学. 2023(01): 143-157 . 百度学术
    7. 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术. 石油钻探技术. 2023(01): 1-8 . 本站查看
    8. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 . 百度学术
    9. 来建强,鲁港,周超,鲁天骐. 井眼轨道模型中的数值积分计算. 石油钻探技术. 2023(03): 45-50 . 本站查看
    10. 杨雪山,窦正道,丁少华,赵进. 一趟钻关键技术在HY1-1HF井的研究与应用. 复杂油气藏. 2023(02): 149-153 . 百度学术
    11. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    12. 鲁港,王海涛,李杉,李雪松,杨志国,王建华,邱晨. 三维七段制圆弧型井眼轨道设计的拟解析解. 石油学报. 2023(09): 1545-1551 . 百度学术
    13. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    14. 李玉海,李博,柳长鹏,郑瑞强,李相勇,纪博. 大庆油田页岩油水平井钻井提速技术. 石油钻探技术. 2022(05): 9-13 . 本站查看
    15. 秦春,刘纯仁,陈文可,唐玉华,曹林云. 苏北盆地HY1HF井钻完井关键技术. 复杂油气藏. 2022(03): 17-23 . 百度学术
    16. 杜焕福,董佑桓,侯文辉,王春伟,孙鑫,杜淑艳,叶应贵. 定测录导一体化在提升水平井储层钻遇率中的应用. 中国地质调查. 2022(06): 1-9 . 百度学术
    17. 李志明,孙中良,黎茂稳,曹婷婷,钱门辉,马晓潇,刘鹏,鲍云杰,蒋启贵,陶国亮,张隽,芮晓庆. 陆相基质型页岩油甜点区成熟度界限探讨——以渤海湾盆地东营凹陷沙三下—沙四上亚段为例. 石油实验地质. 2021(05): 767-775 . 百度学术

    其他类型引用(1)

图(19)  /  表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  81
  • PDF下载量:  79
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-11-24

目录

/

返回文章
返回