The Key Fundamentals for the Efficient Exploitation of Shale Oil and Gas and Its Related Challenges
-
摘要: 为更好地指导我国页岩气资源高效开发,在概述我国页岩气资源和开采现状的基础上,从地质特征预测、安全快速钻井、环保高效开采等方面系统总结了我国页岩气开采面临的工程地质难题,指出页岩非线性工程地质力学特征与预测理论、多重耦合下的页岩油气安全优质钻井理论、页岩地层动态随机裂缝控制机理与无水压裂技术、页岩油气多尺度渗流特征与开采理论等是需要重点解决的关键理论问题,钻采过程中页岩储层物理力学化学特征演化规律与数学表征,多场耦合条件下非连续页岩与钻井完井流体作用机理,页岩地层动态随机裂缝控制、长效导流机制与无水压裂技术,页岩微纳尺度吸附/解吸机制、尺度升级及多场耦合的多相渗流理论等是亟需解决的关键前沿理论问题,并针对各前沿关键力学问题综述了研究进展和发展趋势,对促进我国页岩油气的科学、有效开发具有一定的借鉴作用。Abstract: This paper identifies and discusses the multiple geologic engineering challenges involved in shale gas exploitation which include reservoir characterization, safe and fast drilling, environmentally-friendly and efficient exploitation, and it puts them within a context of China’s experience in exploring for and exploiting shale gas.The paper elaborates upon the key fundamentals, which include geologic mechanical behavior and prediction theories of non-linear shale engineering, safe and quality shale oil and gas well drilling theories based on multiple coupling, dynamic and random fracture control mechanisms and non-aqueous fracturing technologies of shale beds, and multiscale seepage characteristics and exploitation theories of shale oil and gas. The following advanced theoretical issues should be solved as soon as possible. It was necessary to investigate the evolution rules of physical, chemical and mechanical properties of shale reservoirs and carry out mathematical characterization, analyze the interaction between discontinuous surrounding rocks and drilling and completion fluids under multiple coupling conditions, develop dynamic and random fracture control methods, long-term effective diverting mechanisms and non-aqueous fracturing technologies for shale reservoirs, explore micro-nano scale adsorption and desorption mechanisms of shale, and study multi-phase seepage theories with upscaling and multiple coupling. The paper concludes with a summary of research progress and development trends in the key advanced mechanical issues.This paper serves as a reference and guidance for the scientific and efficient development of shale oil and gas in China.
-
Keywords:
- shale oil and gas /
- drilling /
- seepage /
- reservoir stimulation
-
随着对清洁能源需求的日益增长和水力压裂技术的不断发展,页岩气在许多国家蓬勃发展,但绝大多数页岩气井均表现出初期递减率高、采收率较低的特征。B. Kurtoglu等人[1-2]较先提出利用水力压裂提高页岩气采收率的手段。端祥刚等人[3]总结了提高页岩气井采收率面临的技术与科学问题。其中,立体开发调整是目前可行性最强的一种提高采收率手段[4-6]。但立体调整过程中,压裂干扰现象不可避免[7-8],当井距较小时可能对老井生产造成负面影响[9-10]。专家学者已在井间干扰现象方面做了很多研究,J. P. Detring等人[11-12]认为当老井附近出现明显压降时裂缝易连通,老井复产后加密井井口压力会下降;郭旭洋等人[13]介绍了国内外页岩油气藏的井间、层间干扰现象及诊断方法的研究进展;A. Ataei等人[14]利用解析模型,采用RTA、PTA双对数曲线分析法判断干扰情况;Fang Sidong等人[15]采用EDFM技术,模拟了3种缝网干扰下裂缝属性对生产特征的影响;王军磊等人[16]利用地质工程一体化技术,模拟研究了页岩气立体开发缝网延伸特征及生产规律。
以上调研可以看出,前人在页岩气立体开发方面的研究以机理研究和数值模拟为主[17-18]。基于这一局限,笔者以南川常压页岩气藏为研究对象,开展了页岩气立体开发井施工压力对比分析,明确了各开发层系施工特点,以指导立体开发方案部署顺序和压裂施工设计;对比分析了同开发层系加密、不同开发层系调整时压裂施工对老井的干扰现象,剖析缝网沟通机理,并结合干扰前后老井产能变化,完善了页岩气立体开发井压裂缝网干扰评价体系,以根据压裂期间老井套压变化或干扰后老井生产特征预测井间压裂改造效果,从而指导立体开发井动态优化调整。
1. 常压页岩气立体开发特征研究
南川地区一次井网水平井钻遇层位以五峰组—龙马溪组①~③小层为主,生产5年,2020年开始出现递减,现处于低压低产阶段,单井平均累计产气量0.7×108 m3,综合递减率24.6%。为保障老区的高效稳产,纵向上细分开发层系,不断探索立体开发的可行性。目前该区块已经按照“下部气层加密+中、上部气层调整”的模式实施了三层立体开发试验,3套层系评价井均取得较好的试采效果,预测可大幅提高老区剩余储量的均衡动用。
1.1 压裂施工参数分布特征
1.1.1 纵向上与静态指标变化规律一致
根据测井解释、试验分析结果,南川地区五峰组—龙马溪组从上到下9个小层的孔渗、含气性逐渐变好[19-21]。综合地应力、静态指标,可以将五峰组—龙马溪组分为下部气层、中部气层和上部气层3套开发层系[22]。其中,下部气层埋深3 100 m,压力系数1.32,总有机碳含量2.8%~7.0%,孔隙度2.8%~4.8%,含气量4.2~7.2 m3/t;中部气层埋深2 920 m,压力系数1.25,总有机碳含量1.5%~2.6%,孔隙度2.4%~4.5%,含气量1.8~4.6 m3/t;上部气层埋深2650 m,压力系数1.15,总有机碳含量0.9%~1.3%,孔隙度2.9%~4.4%,含气量1.6~2.1 m3/t。
由五峰组—龙马溪组应力剖面可知,下部气层最大水平主应力67.3~76.4 MPa、中部气层最大水平主应力73.1~82.7 MPa、上部气层最大水平主应力76.8~82.9 MPa,局部存在⑤、⑦小层2个应力高峰。据调研,压裂液难以突破高应力层实现裂缝纵向延伸[23-25]。统计已实施的50余口立体开发井压裂施工情况可知,在埋深、地应力等因素作用下,从上至下各层系开发井的施工压力逐渐升高[26-27]。下部气层破裂压力梯度2.5 MPa/100m,停泵压力32.3~57.4 MPa;中部气层破裂压力梯度2.4 MPa/100m,停泵压力30.1~56.0 MPa;上部气层破裂压力梯度2.3 MPa/100m,停泵压力25.5~41.2 MPa。
1.1.2 平面上与井距、采出程度相关性明显
平面上,井间加密施工难易程度受埋深、井间距离、老井采出程度、局部应力等多重因素综合影响。对比不同井距、采出程度时加密井施工压力可以看出,当井距大于450 m或老井动态控制储量的采出程度低于60%时,加密井施工压力受老井的影响相对较小,此时破裂压力比老井略低5~10 MPa;当老井井距小于450 m时,加密井破裂压力比老井低9~20 MPa(见表1)。
表 1 不同加密类型下的施工压力对比Table 1. Fracturing pressure comparison of different infill types加密类型 老井间距/m 加密前老井累计
产气量/108m3井间采出程度,% 破裂压力/MPa 破裂压力梯度/
(MPa∙(100 m)−1)下部气层老井 350~550 57.1~86.4 1.9~3.0 大井距加密 450~550 0.9 58.0 56.8~85.1 2.0~3.0 大井距加密 450~550 1.0 64.5 54.2~81.3 1.8~2.9 小井距加密 350~450 0.7 54.7 51.8~76.6 1.8~2.8 小井距加密 350~450 0.8 62.5 46.3~65.5 1.6~2.5 对比加密井与老井破裂压力梯度差值散点图也可以看出,随着井距增加或老井采出程度降低,新老井破裂压力梯度差值减小(见图1和图2)。这一规律符合现场实践,随着新老井距离减小、井间储量动用程度提高,加密时的地层压力较原始地层压力小很多,加密井施工相对更容易,表现为破裂压力低、停泵压力低。如果地层亏空严重时,加密井在钻井、连续油管钻塞过程中还会发生漏失。
1.2 产能对比分析
非稳态产能分析方法以气藏不稳定渗流与井筒流动耦合为理论基础,利用气井生产数据,实现对气井产量、压力、无阻流量及采出程度等随时间变化的预测,并可拟合气井的地层参数,求取页岩气动态储量[28-29]。国内外研究表明,对于低渗气藏的大型加砂压裂气井,会出现较长时间的地层线性流动,在忽略表皮效应的理想状态下,压裂井不稳定产能方程为:
pR2−pwf2q=A√t+C (1) 其中A=μZT78.489Kh√3.6KϕμCtxf2 (2) C=G(Fcd)−lnxfrw (3) 式中:pR为原始地层压力,MPa;pwf为井底流压,MPa;q为产气量,104m3/d;t为时间,d;A为产能系数;C为与人工缝导流性相关的附加值;μ为黏度,mPa∙s;Z为气体偏差系数;T为地层热力学温度,K;K为渗透率,mD;h为气层有效厚度,m;ϕ为孔隙度;Ct为综合压缩系数,MPa−1;rw为井筒半径,m;xf为裂缝半长,m;G(Fcd)为裂缝导流能力G函数。
A值越大,表明储层流动系数越大,产能越高;C值越大,表明人工裂缝越短,流体渗流阻力越大。
不稳态产能拟合结果表明:1)下部气层老井与下部气层加密井的A值均为12.3,中部气层井A值为11.6,上部气层井A值为5.2;2)C值关系为:上部气层井>>下部气层老井>中部气层井>下部气层加密井(见图3)。因此,下部气层井产能优于中部气层井,上部气层井产能最差;就改造效果而言,下部气层加密井受井间动用影响,改造难度小,相同压裂规模下改造效果最佳。
2. 立体开发缝网干扰分析
立体开发缝网干扰主要包括平面和纵向缝网干扰。平面缝网干扰,即同一开发层系新井或加密井与相邻老井的缝网沟通、干扰;纵向缝网干扰,即某一开发层系新井压裂时,与上、下开发层系老井之间的干扰。
2.1 平面干扰特征
2.1.1 压裂干扰现象
为防止加密井压裂时与老井形成主缝窜通,影响加密井正常施工,现场在加密井压裂施工期间一般采取老井关井处理。据统计,老井关井期间套压变化可归为3种类型,可以通过对比压力变化,粗略预测老井改造效果。
1)平稳上升型。伴随加密井压裂施工,老井套压逐步增大,增大幅度平稳,且套压增大到一定数值后基本稳定。此现象通常发生在老井各段改造均衡情况下,当加密井与老井空间距离大于280 m时,老井套压增大2.0~6.5 MPa;当加密井与老井空间距离在240~280 m时,老井套压增大5.1~13.2 MPa。这种类型的老井,往往在加密井压裂结束后开井复产时日产气量、套压高于关井前生产水平,随着关井期间压力增幅的不同,压裂受效时间(即恢复原日产油量时间)有所不同。
2)迅速上升型。加密井压裂施工一开始,老井套压先迅速升高,然后呈小幅度增长趋势,并伴有上、下波动。此情况多发生在中小井距加密方式下,或老井改造效果好、缝网复杂时。由于老井压后形成的缝网渗透性好,加密井在进行压裂时压力传播速度加快,所以老井的套压会迅速达到一定高值(压力增幅一般不低于4.0 MPa),后续套压的波动主要是压差作用下SRV内的水流入井底造成液面波动。这种类型的老井,开井复产后产液量有小幅增大。
3)升降型。加密井压裂施工周期内,老井套压一直增长且增幅较大,后续下降至平稳。此种类型的老井主缝相对较长,且套压波动现象越早,表明老井主缝越长,施工压力波及时间越短,积液越快。重新开井后,产液量由0~10 m3/d明显增加至50~65 m3/d。
2.1.2 缝网干扰机理及数值模拟研究
加密井与老井产生压裂干扰形式多样,如加密井压裂缝与老井天然缝、改造缝沟通等,具体是哪种缝网沟通起主要干扰作用,取决于气藏天然缝网发育程度及页岩气井压裂改造水平,大致可以总结归纳为以下4种干扰机理:
1)干扰机理1。老井与加密井压裂缝直接沟通,即新老井的高导流缝沟通,干扰形式为加密井压裂期间施工压力异常低,老井套压变化类型为升降型。
2)干扰机理2。老井压裂缝与加密井微裂缝沟通,即老井高导流缝与加密井低导流缝沟通,加密井压裂期间老井套压类型为平稳增大型,增幅较大。
3)干扰机理3。老井天然缝或改造微裂缝与加密井压裂缝沟通,即老井低导流缝与加密井高导流缝沟通,加密井压裂期间老井套压类型为迅速上升型。
4)干扰机理4。老井微裂缝与加密井微裂缝沟通,即新老井低导流缝进行沟通,加密井压裂期间老井套压类型为平稳增大型,增幅较小。
选取南川页岩气藏实际地质参数,利用Compass数值模拟软件建立双重介质水平井分段压裂模型,包括同层系开发的2口老井和1口加密井。模型尺寸2 500 m×1 000 m×110 m,网格数量250×100×27,平面I/J方向网格步长10 m,纵向K方向网格步长4 m。模型基础参数为:埋深3 200 m,孔隙度2.9%~4.4%,渗透率0.18 μD,含气饱和度0.6%~0.7%,形状因子1.0×10−5,井距500 m,水平段长度2 000 m,裂缝半长120~180 m,定产量6.5×104 m3/d,生产时长15年。数值模型中,缝网沟通机理可简化为FRAC-FRAC、FRAC–SRV、SRV-FRAC、SRV-SRV和无沟通等5种形式,模拟结果见图4—图5。
从图4可以看出,无论是老井与加密井低导流缝间(SRV-SRV)的沟通,还是老井高导流缝与加密井低导流缝沟通(FRAC-SRV),受压降漏斗影响,老井都会抢夺加密井的井控储量,累计产气量从大到小依次为:SRV-SRV>FRAC-SRV>FRAC-FRAC>SRV-FRAC>井间无沟通。
根据加密井累计产气量曲线(见图5)可知,与老井不同的是,当加密井高导流缝与老井低导流缝沟通(SRV-FRAC)时,可以适当抵消老井压降影响进而抢气。对于井组而言,低导流缝间的沟通(SRV-SRV)为最佳方案,此时储量动用最充分,井组累计产气量最高。
2.1.3 缝网干扰对老井生产的影响
综合缝网干扰类型,利用现代试井解释成果和递减规律,可将不同干扰机理对老井生产水平的影响分为以下4类情况。
1)老井最终可采储量(estimated ultimate recovery,EUR)增加。可能存在裂缝沟通或压裂改造体积重叠(干扰机理1或2),既补充驱动能量,又改善了老井渗流条件,典型曲线平行上移。若老井复产后日产气量大幅上升,老井液量很快恢复至压裂干扰前水平,则为机理2;若复产初期产液量大幅上升,则为机理1。
2)老井EUR、典型曲线均不变。井间连通性弱(干扰机理4),老井复产后日产气量和套压有一定增大,但典型曲线仍在原趋势线上。
3)老井EUR不变、典型曲线先增后降至原水平。仅增大驱动压差(无沟通),典型曲线为先增大、后以较大斜率回落至原趋势线。
4)老井EUR有减小趋势。老井低导流缝与加密井高导流缝沟通(干扰机理3),老井日产气量增幅大、递减快,典型曲线逐渐低于原趋势。老井复产初期受加密井压裂后地层能量的补充,日产气量也会增大,但最终预测的EUR降低。
以上分析可以得出,对于同开发层系,大井距加密时,可以适当提高老井EUR或采气速度;而小井距加密时需严格论证施工参数,控制压裂规模,既要满足井间剩余储量的充分动用,又要防止主缝过长,影响气井采收率。
2.2 纵向干扰特征
立体开发纵向干扰,主要指不同开发层系井压裂时与邻近层系井的缝网沟通现象。
2.2.1 压裂干扰现象
微地震监测结果显示,人工改造裂缝主要在平面上扩展,纵向上扩展有限,有效裂缝高约15~25 m。区块上部气层井压裂时,下部气层老井(空间距离180~340 m)套压增幅低于3.0 MPa;中部气层井压裂时,下部气层老井(空间距离160~190 m)套压明显波动,套压增大2.5~6.0 MPa。据统计,不同开发层系井压裂对老井生产无明显影响,老井复产后短期内出现日产气量、套压上升现象,但很快回落至压裂关井前的生产水平。
2.2.2 2套层系立体开发井拉链压裂
研究表明,页岩气井压裂对正钻井施工有显著影响[30],但对压裂施工相互影响的研究相对较少,且层间干扰无法忽略[31]。近期,南川地区实施了中部气层井焦页206-Z1HF和下部气层加密井焦页195-M2HF拉链式压裂。2口井空间距离150~190 m,压裂段对应关系与最小水平主应力方向基本平齐,压裂过程中2口井的施工压力均高于同开发层系邻井水平。其中,焦页195-M2HF井平均破裂压力82.0 MPa,破裂压力梯度2.8 MPa/100m,比下部气层老井高0.1~0.6 MPa/100m;同期施工的焦页206-Z1HF井平均破裂压力80.9 MPa,比同开发层系井高10.0~12.0 MPa,破裂压力梯度2.9 MPa/100m,比同开发层系井高0.8~1.0 MPa/100m。不同层系井拉链压裂对缝网复杂程度的影响,还有待进一步验证。
3. 结论与建议
1)不同层系立体开发井施工压力纵向上与储层孔渗、压力系数等参数规律具有良好的一致性,下部气层井破裂压力梯度高于中部气层井,上部气层井破裂压力梯度最低。同开发层系加密井施工压力一般低于相邻老井,且随井距增加或井间采出程度减小,加密井与老井破裂压力梯度差值减小。
2)立体开发井产能主要受地层能量、储量丰度影响,下部气层井产能优于中部气层井,上部气层井产能最差。综合立体调整井压裂改造难易程度,建议优先动用下部气层,其次实施下部气层加密井和中部气层井,最后实施上部气层井。
3)同层系加密施工时,当老井套压平稳上升,若复产后EUR增加,表明老井高导流缝和加密井低导流缝沟通;若EUR不变,则新老井之间为低导流缝间的沟通。当老井套压迅速上升并伴随波动,复产后老井EUR减小,干扰机理为老井低导流缝与加密井高导流缝沟通。当老井套压表现为升降型,复产后EUR增加,则新老井之间为高导流缝间的沟通。数值模拟研究表明,老井和加密井低导流缝沟通时的采出程度最高,储量动用最充分。
4)建议在实施立体调整前利用建模数模一体化落实区块三层立体开发潜力,根据一次井网井距和改造效果优化调整加密井压裂规模,深化立体开发技术适应性分析,为方案整体部署提供依据。
-
[1] 潘潇.国际地质新动态[J].资源环境与工程,2014,28(5):762. Pan Xiao.The new development of international geology[J].Resources Environment Engineering,2014,28(5):762. [3] 赵常青,谭宾,曾凡坤,等.长宁-威远页岩气示范区水平井固井技术[J].断块油气田,2014,21(2):256-258. Zhao Changqing,Tan Bin,Zeng Fankun,et al.Cementing technology of horizontal well in Changning-Weiyuan shale gas reservoir[J].Fault-Block Oil and Gas Field,2014,21(2):256-258. [4] 周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. Zhou Dehua,Jiao Fangzheng,Jia Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80. [5] 任勇,钱斌,张剑,等.长宁地区龙马溪组页岩气工厂化压裂实践与认识[J].石油钻采工艺,2015,37(4):96-99. Ren Yong,Qian Bin,Zhang Jian,et al.Practice and understanding of industrial fracturing for shale gas of Longmaxi Formation in Changning region[J].Oil Drilling Production Technology,2015,37(4):96-99. [6] 路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. Lu Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8. [7] 葛洪魁,王小琼,张义.大幅度降低页岩气开发成本的技术途径[J].石油钻探技术,2013,41(6):1-5. Ge Hongkui,Wang Xiaoqiong,Zhang Yi.A technical approach to reduce shale gas development cost[J].Petroleum Drilling Techniques,2013,41(6):1-5. [8] 薛承瑾.国内页岩气有效开采值得关注的几个问题[J].石油钻探技术,2012,40(4):1-6. Xue Chengjin.Noteworthy issues on effective production of shale gas resource in China[J].Petroleum Drilling Techniques,2012,40(4):1-6. [9] 曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. Zeng Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6. [10] 陈平,刘阳,马天寿.页岩气"井工厂"钻井技术现状及展望[J].石油钻探技术,2014,42(3):1-7. Chen Ping,Liu Yang,Ma Tianshou.Status and prospect of multi-well pad drilling technology in shale gas[J].Petroleum Drilling Techniques,2014,42(3):1-7. [11] 薛承瑾.页岩气压裂技术现状及发展建议[J].石油钻探技术,2011,39(3):24-29. Xue Chengjin.Technical advance and development proposals of shale gas fracturing[J].Petroleum Drilling Techniques,2011,39(3):24-29. [12] 蒋廷学,卞晓冰,苏瑗,等.页岩可压性指数评价新方法及应用[J].石油钻探技术,2014,42(5):16-20. Jiang Tingxue,Bian Xiaobing,Su Yuan,et al.A new method for evaluating shale fracability index and its application[J].Petroleum Drilling Techniques,2014,42(5):16-20. [13] Rickman R,Mullen M,Petre E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale[R].SPE 115258,2008.
[14] Boris Tarasov,Yves Potvin.Universal criteria for rock brittleness estimation under triaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2013,59:57-69.
[15] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685. LiQinghui,Chen Mian,Jin Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685. [16] Hyunil J.Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore[R].SPE154930,2012.
[17] Bruce R M,Lucas W B.A discrete fracture network model for hydraulically induced fractures:theory,parametric and case studies[R].SPE140514,2011.
[18] Thomsen L.Weakelastic anisotropy[J].Geophysics,1986,51(10) :1954-1966.
[19] Berryman J G.Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies[J].Geophysics,2008,73(1):1-10.
[20] 胡起,陈小宏,李景叶.基于各向异性岩石物理模型的页岩气储层横波速度预测[J].石油物探,2014,53(3):254-261. Hu Qi,Chen Xiaohong,Li Jingye.Shear wave velocity prediction for shale gas reservoirs based onanisotropic rock physics model[J].Geophysical prospecting for petroleum,2014,53(3):254-261. [21] Xu Weiya,Zhang Jiuchang,Wang Rubin,et al.An elasto-plastic model and its return mapping scheme for anisotropic rocks[C]//Yang Qiang,Zhang Jianmin,Zheng Hong,et al.Constitutive modeling of geomaterials:advances and new applications.Berlin:Springer Berlin Heidelberg,2013:371-380.
[22] Tiryaki B.Evaluation of theindirect measures of rock brittleness and fracture toughness in rock cutting[J].Journal of The South African Institute of Mining And Metallurgy,2006,106(6):407-424.
[23] Yu M,Chen G,Chenevert M,et al.Chemical and thermal effects on wellbore stability of shale formations[R].SPE 71366,2011.
[24] 金衍,陈勉.水敏性泥页岩地层临界坍塌时间的确定方法[J].石油钻探技术,2004,32(2):12-14. Jin Yan,Chen Mian.A method for determining the critical time of wellbore instability at water-sensitive shale formations[J].Petroleum Drilling Techniques,2004,32(2):12-14. [25] Ghassemi A,Tao Q,Diek A.Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J].Journal of Petroleum Science and Engineering,2009,67(1):57-64.
[26] Wang Q,Chen Z,Ma P,et al.Analysis of effect factor in shale wellbore stability[R].ARMA 2013-504,2013.
[27] Liang Chuan,Chen Mian,Lu Baoping,et al.The study of nano sealing to improve the brittle shale wellbore stability under dynamic load[R].OTC 24919,2014.
[28] Siddiqui M A,Nasr-EI-Din H A.Evaluation of special enzymes as a means to remove formation damage induced by drill-in fluids in horizontal gas wells in tight reservoirs[R].SPE 81455,2003.
[29] Lakatos I J,Bodi T,Lakatos-Szabo J,et al.Mitigation of formation damage caused by water-based drilling fluid in unconventional gas reservoirs[R].SPE 127999,2010.
[30] Sahai R,Miskimins J L,Olson K E.Laboratory results of proppant transport in complex fracture systems[R].SPE 168579,2014.
[31] Guo Jianchun,Liu Yuxuan.Modeling of proppant embedment:elastic deformation and creep deformation[R].SPE 157449,2012.
[32] Deng Shouchun,Li Haibo,Ma Guowei,et al.Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method[J].International Journal of Rock Mechanics and Mining Sciences,2014,70:219-228.
[33] Wu Ruiting,Kresse O,Weng Xiaowei,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[R].SPE 152052,2012.
[34] Cheng Yueming.Mechanical interaction of multiple fractures-exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale-gas wells[J].SPE Journal,2012,17(4):992-1001.
[35] Altmann J B,Müller T M,Müller B I R,et al.Poroelastic contribution to the reservoir stress path[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1104-1113.
[36] 韩烈祥,朱丽华,孙海芳,等.LPG 无水压裂技术[J].天然气工业,2014,34(6):48-54. Han Liexiang,Zhu Lihua,Sun Haifang,et al.LPG waterless fracturing technology[J].Natural Gas Industry,2014,34(6):48-54. [37] 宋振云,苏伟东,杨延增,等.CO2干法加砂压裂技术研究与实践[J].天然气工业,2014,34(6):55-59. Song Zhenyun,Su Weidong,Yang Yanzeng,et al.Experimental studies of CO2/sanddry-fracprocess[J].Natural Gas Industry,2014,34(6):55-59. [38] 林英松,刘兆年,秦涛.层内爆炸后储层裂缝分析方法研究[J].断块油气田,2006,13(1):44-46. Lin Yingsong,Liu Zhaonian,Qin Tao.Analysis methods of reservoir fracture after exploding in fracture[J].Fault-Block Oil and Gas Field,2006,13(1):44-46. [39] 徐鹏,刘新云,石李保.地应力对爆炸压裂影响规律的数值模拟研究[J].石油钻探技术,2013,41(1):65-69. Xu Peng,Liu Xinyun,Shi Libao.Numerical simulation for the effect of ground stress on explosive fracturing[J].Petroleum Drilling Techniques,2013,41(1):65-69. [40] 姚军,孙海,黄朝琴,等.页岩气藏开发中的关键力学问题[J].中国科学:物理学力学天文学,2013,43(12):1527-1547. Yao Jun,Sun Hai,Huang Zhaoqin,et al.Key mechanical problems in the development of shale gas reservoirs[J].ScientiaSinica:Physica,Mechanica Astronomica,2013,43(12):1527-1547. [41] 孙海,姚军,张磊,等.基于孔隙结构的页岩渗透率计算方法[J].中国石油大学学报:自然科学版,2014,38(2):92-98. Sun Hai,Yao Jun,Zhang Lei,et al.A computing method of shale permeability based on pore structures[J].Journal of China University of Petroleum:Edition of Natural Science,2014,38(2):92-98. -
期刊类型引用(22)
1. 佘朝毅. 四川盆地深层页岩气钻井关键技术新进展及发展展望. 天然气工业. 2024(03): 1-9 . 百度学术
2. 路智勇,刘莉,姜宇玲,张谦,湛小红,肖佳林. 涪陵气田立体开发地质工程一体化实践. 中国石油勘探. 2024(03): 10-20 . 百度学术
3. 王能,邹亚平,田秀明. 工程地质一体化在宁XX-3井的应用. 西部探矿工程. 2023(01): 79-81 . 百度学术
4. 王维,韩金良,王玉斌,杨干,苗强,辛江,李猛. 大宁-吉县区块深层煤岩气水平井钻井技术. 石油机械. 2023(11): 70-78 . 百度学术
5. 付强. 四川盆地页岩气超长水平段水平井钻井实践与认识. 钻采工艺. 2022(04): 9-18 . 百度学术
6. 张益,卜向前,齐银,杨永智,陈亚舟,侯晓云,王瑞,张斌,同松. 鄂尔多斯盆地姬塬油田长7段页岩油藏地质工程一体化油藏开发对策——以安83井区为例. 中国石油勘探. 2022(05): 116-129 . 百度学术
7. 陈更生,吴建发,刘勇,黄浩勇,赵圣贤,常程,钟成旭. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术. 天然气工业. 2021(01): 72-82 . 百度学术
8. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
9. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
10. 陈四平,谭判,石文睿,赵红燕. 涪陵页岩气优质储层测井综合评价方法. 石油钻探技术. 2020(04): 131-138 . 本站查看
11. 张合文,崔明月,张宝瑞,赫安乐,晏军,梁冲,郭双根,贾洪革,马良. 低渗透薄层难动用边际油藏地质工程一体化技术——以滨里海盆地Zanazour油田为例. 中国石油勘探. 2019(02): 203-209 . 百度学术
12. 郑述权,谢祥锋,罗良仪,景洋,唐梦,杨瑞帆,钟广荣,王军,陈正云. 四川盆地深层页岩气水平井优快钻井技术——以泸203井为例. 天然气工业. 2019(07): 88-93 . 百度学术
13. 岳砚华,伍贤柱,张庆,赵晗,姜巍. 川渝地区页岩气勘探开发工程技术集成与规模化应用. 天然气工业. 2018(02): 74-82 . 百度学术
14. 屈华业. 外围油田钻井地质分层设计方法研究. 西部探矿工程. 2018(08): 53-54+56 . 百度学术
15. 罗鑫,张树东,王云刚,简利,张德军. 昭通页岩气示范区复杂地质条件下的地质导向技术. 钻采工艺. 2018(03): 29-32+6-7 . 百度学术
16. 吴宝玉,夏宏泉,阳大祥,王孝忠,王勇. 多学科结合地质导向技术在川东复杂地层中的应用. 国外测井技术. 2018(04): 8-11 . 百度学术
17. 郑杰. 四川盆地长宁地区页岩气井压裂效果影响因素分析及对策研究. 重庆科技学院学报(自然科学版). 2017(03): 1-6 . 百度学术
18. 顾林元. 页岩气水平井轨迹导向物探技术方法. 江汉石油科技. 2017(02): 40-43 . 百度学术
19. 章敬,罗兆,徐明强,江洪,陈仙江,王腾飞,罗洪. 新疆油田致密油地质工程一体化实践与思考. 中国石油勘探. 2017(01): 12-20 . 百度学术
20. 王昕,杨斌,王瑞. 吐哈油田低饱和度油藏地质工程一体化效益勘探实践. 中国石油勘探. 2017(01): 38-45 . 百度学术
21. 吴宗国,梁兴,董健毅,李兆丰,张朝,王高成,高阳,李峋. 三维地质导向在地质工程一体化实践中的应用. 中国石油勘探. 2017(01): 89-98 . 百度学术
22. 杨远,何幼斌,罗进雄. 基于复合数学模型的致密油地质工程一体化开采理念与路线. 中外能源. 2017(07): 27-35 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 4176
- HTML全文浏览量: 138
- PDF下载量: 3902
- 被引次数: 34