基于卡尔曼滤波的动态地质模型导向方法

陆自清

陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术, 2021, 49(1): 113-120. DOI: 10.11911/syztjs.2020135
引用本文: 陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术, 2021, 49(1): 113-120. DOI: 10.11911/syztjs.2020135
LU Ziqing. Geosteering Methods of a Dynamic Geological Model Based on Kalman Filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113-120. DOI: 10.11911/syztjs.2020135
Citation: LU Ziqing. Geosteering Methods of a Dynamic Geological Model Based on Kalman Filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113-120. DOI: 10.11911/syztjs.2020135

基于卡尔曼滤波的动态地质模型导向方法

基金项目: 中国煤炭科工集团有限公司科研项目“矿井水文地质异常构造三维精细建模及水害辅助评价研究”(编号:2018-TD-MS072)、国家重点研发计划项目“井下随掘巷道动态超前探测技术与装备”(编号:2018YFC0807804)和天地科技股份有限公司科技创新创业资金专项项目(编号:2019-TD-ZD003,2020-TD-ZD002)联合资助
详细信息
    作者简介:

    陆自清(1984—),男,湖北黄冈人,2008年毕业于西北大学物理学专业,2014年获西安科技大学地球探测与信息技术专业硕士学位,在读博士研究生,主要从事地球物理勘探与工程应用研究。E-mail:luziqing@cctegxian.com。

  • 中图分类号: TE243+.1

Geosteering Methods of a Dynamic Geological Model Based on Kalman Filter

  • 摘要: 针对现有三维地质导向技术被动调整导向较多,利用随钻信息进行预判功能不强的问题,提出了基于卡尔曼滤波的动态地质模型导向方法。该方法利用区域地质、测井资料建立包含当前构造与属性认识的初始地质模型;基于卡尔曼滤波方法,对随钻测量和随钻测井数据进行处理,形成靶区目标地层的多个模拟结果;提取与随钻数据匹配程度最高的模拟结果,计算靶区地层真厚度、地层倾角;将其输入初始地质模型中,更新模型构造和地质属性,并在最新地质模型的控制下及时优化导向钻进策略。鄂尔多斯盆地YP油田YP1井采用该方法进行了导向钻进,根据随钻测量和测井数据及时调整井眼轨迹,使该井1 901.00 m长水平段的优质储层钻遇率达到92.1%。研究和应用结果表明,基于卡尔曼滤波的动态地质模型导向方法可利用随钻信息预判钻遇地层,主动调整导向策略,使井眼沿优质储层穿行。
    Abstract: Due to the fact that existing 3D geosteering technology requires passive adjustment, and it has poor predictive qualities with the information while drilling, the author proposed a geosteering method using the dynamic geological models based on a Kalman filter (EnKF). In doing so, the researcher established an initial geological model including the current structure and attribute understanding based on the regional geological and logging data. The data for measurement while drilling (MWD) and logging while drilling (LWD) were processed using the EnKF method to yield many simulation results for the formation in the target area. Best-fit simulation results containing the best matching with the data while drilling were extracted to calculate the true thickness and dip angle of the formation in the target area. These results were input to the initial geological model to update the model structure and geological attributes. The goal was to optimize the geosteering drilling strategies under the control of the latest geological model. This method for geosteering drilling was used in the Well YP1 of the YP Oilfield in the Ordos Basin. The borehole trajectories were adjusted in time according to the MWD and LWD data, so as to get the drilling rate of high-quality reservoirs up to 92.1% in the 1901m long horizontal section of the well. The research and application results showed that the geosteering method incorporating dynamic geological models based on EnKF can use the information while drilling to pre-assess the drilled formation and actively adjust the geosteering strategy, maintaining the borehole travel in the zone of high-quality reservoirs.
  • 图  1   卡尔曼滤波动态地质模型的导向流程

    Figure  1.   Geosteering flow of the dynamic geological model based on EnKF

    图  2   EnKF循环过程

    Figure  2.   EnKF cycle process

    图  3   基于目标模拟与实测间相关系数的模型优选

    Figure  3.   Model optimization based on the correlation coefficient of target simulation and measurements

    图  4   二维地层真厚度示意

    Figure  4.   Schematic of the true thickness of 2D formation

    图  5   三维地层真厚度示意

    Figure  5.   Schematic of the true thickness of 3D formation

    图  6   地层倾角变化

    Figure  6.   Change of dip angle

    图  7   初始地质模型自然伽马属性剖面

    Figure  7.   GR attribute profile of the initial geological model

    图  8   初始构造导向模型

    Figure  8.   Initial geosteering model

    图  9   初始模型正演自然伽马测井曲线与随钻自然伽马测井曲线对比

    Figure  9.   Comparison of initial model forward GR logging curve and GR logging curve while drilling

    图  10   重构模型正演自然伽马测井曲线与随钻自然伽马测井曲线对比

    Figure  10.   Comparison of reconstructed model forward logging curve and GR logging curve while drilling

    图  11   重构地层的地质导向剖面

    Figure  11.   Geosteering profile of the reconstructed formation

    图  12   更新自然伽马属性剖面

    Figure  12.   Updated GR attribute profile

    图  13   YP1井水平段完井剖面

    Figure  13.   Completion profile of the horizontal section of Well YP1

  • [1] 舒红林,王利芝,尹开贵,等. 地质工程一体化实施过程中的页岩气藏地质建模[J]. 中国石油勘探,2020,25(2):84–95. doi: 10.3969/j.issn.1672-7703.2020.02.009

    SHU Honglin, WANG Lizhi, YIN Kaigui, et al. Geological modeling of shale gas reservoir during the implementation process of geology-engineering integration[J]. China Petroleum Exploration, 2020, 25(2): 84–95. doi: 10.3969/j.issn.1672-7703.2020.02.009

    [2] 李建忠,郑民,陈晓明,等. 非常规油气内涵辨析,源-储组合类型及中国非常规油气发展潜力[J]. 石油学报,2015,36(5):521–532.

    LI Jianzhong, ZHENG Min, CHEN Xiaoming, et al. Connotation analyses source-reservoir assemblage types and development potential of unconventional hydrocarbon in China[J]. Acta Petrolei Sinica, 2015, 36(5): 521–532.

    [3] 鲜成钢,张介辉,陈欣,等. 地质力学在地质工程一体化中的应用[J]. 中国石油勘探,2017,22(1):75–88. doi: 10.3969/j.issn.1672-7703.2017.01.010

    XIAN Chenggang, ZHANG Jiehui, CHEN Xin, et al. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017, 22(1): 75–88. doi: 10.3969/j.issn.1672-7703.2017.01.010

    [4] 苏义脑. 地质导向钻井技术概况及其在我国的研究进展[J]. 石油勘探与开发,2005,32(1):92–95. doi: 10.3321/j.issn:1000-0747.2005.01.025

    SU Yinao. Geosteering drilling technology and its development in China[J]. Petroleum Exploration and Development, 2005, 32(1): 92–95. doi: 10.3321/j.issn:1000-0747.2005.01.025

    [5] 张绍槐. 现代导向钻井技术的新进展及发展方向[J]. 石油学报,2003,24(3):82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018

    ZHANG Shaohuai. New progress and development direction of modern steering drilling techniques[J]. Acta Petrolei Sinica, 2003, 24(3): 82–85. doi: 10.3321/j.issn:0253-2697.2003.03.018

    [6] 中国石油勘探与生产公司, 斯伦贝谢中国公司. 地质导向与旋转导向技术应用及发展[M]. 北京: 石油工业出版社, 2012.

    PetroChina Exploration and Production Company, Schlumberger China Company. Application and development of geosteering and rotary steerable system technique[M]. Beijing: Petroleum Industry Press, 2012.

    [7] 高晓飞,闫正和,曾显磊. 新型地质导向技术在薄层油藏中的应用[J]. 石油天然气学报,2010,32(5):214–218.

    GAO Xiaofei, YAN Zhenghe, ZENG Xianlei. Application of new geosteering technology in thin reservoirs[J]. Journal of Oil and Gas Technology, 2010, 32(5): 214–218.

    [8] 李一超,王志战,秦黎明,等. 水平井地质导向录井关键技术[J]. 石油勘探与开发,2012,39(5):620–625.

    LI Yichao, WANG Zhizhan, QIN Liming, et al. Key surface logging technologies in horizontal geosteering drilling[J]. Petroleum Exploration and Development, 2012, 39(5): 620–625.

    [9] 王卫,王佳琦,古茜. 井震联合构建三维地质导向模型关键技术研究[J]. 录井工程,2018,29(2):27–31. doi: 10.3969/j.issn.1672-9803.2018.02.007

    WANG Wei, WANG Jiaqi, GU Qian. Study on key technologies of constructing 3D geosteering model by integrated analysis of well logging and seismic data[J]. Mud Logging Engineering, 2018, 29(2): 27–31. doi: 10.3969/j.issn.1672-9803.2018.02.007

    [10] 高浩锋,成志刚,万金彬,等. 水平井高精度三维地质建模技术及应用[J]. 测井技术,2018,42(1):54–59.

    GAO Haofeng, CHENG Zhigang, WAN Jinbin, et al. High precision three-dimensional geological model and its application in the interpretation of horizontal well[J]. Well Logging Technology, 2018, 42(1): 54–59.

    [11] 周明晖.储层地质模型的建立及动态实时跟踪研究[D].青岛: 中国石油大学(华东), 2009.

    ZHOU Minghui. Study on reservoir geologic modeling and dynamic real-time tracking[D]. Qingdao: China University of Petroleum(East China), 2009.

    [12] 吴宗国,梁兴,董健毅,等. 三维地质导向在地质工程一体化实践中的应用[J]. 中国石油勘探,2017,22(1):89–98. doi: 10.3969/j.issn.1672-7703.2017.01.011

    WU Zongguo, LIANG Xing, DONG Jianyi, et al. Application of 3D geosteering in geology-engineering integration practice[J]. China Petroleum Exploration, 2017, 22(1): 89–98. doi: 10.3969/j.issn.1672-7703.2017.01.011

    [13] 文鑫,戴宗,唐辉,等. 珠江口盆地XJ油田薄油层水平井三维地质导向技术[J]. 石油钻探技术,2016,44(6):42–47.

    WEN Xin, DAI Zong, TANG Hui, et al. Three-dimensional geosteering horizontal drilling technique in thin reservoirs in the XJ Oilfield, Pearl River Mouth Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 42–47.

    [14] 孙坤忠,刘江涛,王卫,等. 川东南JA侧钻水平井地质导向技术[J]. 石油钻探技术,2015,43(4):138–142.

    SUN Kunzhong, LIU Jiangtao, WANG Wei, et al. Geosteering drilling techniques of horizontal sidetracking well JA, Southeast Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(4): 138–142.

    [15] 陈颖杰,刘阳,徐婧源,等. 页岩气地质工程一体化导向钻井技术[J]. 石油钻探技术,2015,43(5):56–62.

    CHEN Yingjie, LIU Yang, XU Jingyuan, et al. Integrated steering drilling technology for geology engineering of shale gas[J]. Petroleum Drilling Techniques, 2015, 43(5): 56–62.

    [16]

    BURGERS G, PETER J V L, EVENSEN G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6): 1719–1724. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

    [17]

    KALMAN R E, BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961, 83(1): 95–108. doi: 10.1115/1.3658902

    [18]

    EVENSEN G. Data assimilation: the ensemble Kalman filter[M]. Berlin: Springer-Verlag, 2009.

    [19]

    REICHLE R H, MCLAUGHLIN D B, ENTEKHABI D. Hydrologic data assimilation with the ensemble Kalman filter[J]. Monthly Weather Review, 2002, 130(1): 103–114. doi: 10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2

    [20]

    XIA Chuan’an, HU B X, TONG Juxiu, et al. Data assimilation in density-dependent subsurface flows via localized iterative ensemble Kalman filter[J]. Water Resources Research, 2018, 54(9): 6259–6281. doi: 10.1029/2017WR022369

    [21]

    GEIR N, JOHNSEN L M, ANONSEN S I, et al. Reservoir monitoring and continuous model updating using ensemble Kalman filter[R]. SPE 84372, 2003.

    [22]

    ANDERSON J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884–2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

    [23]

    CHEN Yan. Ensemble-based closed-loop production optimiza-tion[D]. Norman: The University of Oklahoma, 2008.

    [24]

    YU Hwa-Lung, KOLOVOS A, CHRISTAKOS G, et al. Interactive spatiotemporal modelling of health systems: the SEKS-GUI framework[J]. Stochastic Environmental Research and Risk Assessment, 2007, 21(5): 555–572. doi: 10.1007/s00477-007-0135-0

    [25]

    ALYAEV S, BRATVOLD R B, LUO Xiaodong, et al. An Interactive decision support system for geosteering operations[R]. SPE 191337, 2018.

    [26]

    SUTER E, CAYEUX E, FRⅡS H A, et al. A novel method for locally updating an earth model while geosteering[J]. International Journal of Geosciences, 2017, 8(2): 237–264. doi: 10.4236/ijg.2017.82010

    [27]

    HAMILL T M, WHITAKER J S, SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776–2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

    [28]

    ANDERSON J L, ANDERSON S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2741–2758. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

    [29]

    LUO Xiaodong, HOTEIT I. Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter[J]. Monthly Weather Review, 2011, 139(12): 3938–3953. doi: 10.1175/MWR-D-10-05068.1

    [30]

    TEARPOCK D J, BISCHKE R E. Applied subsurface geological mapping with structural methods[M]. Upper Saddle Rive: Prentice Hall PTR, 2002.

  • 期刊类型引用(8)

    1. 张锦宏,张波,曹明,孙晨祥,刘涛,廖碧朝,牟小清. 中国石化“深地工程”油气测试关键技术及展望. 石油钻探技术. 2024(02): 48-57 . 本站查看
    2. 姚磊,陈丽君. TCP小直径封隔器封井工艺技术. 油气井测试. 2023(01): 22-26 . 百度学术
    3. 张永涛,张伟国,覃建宇,秦世利,贺振中,陈书豪. 大位移定向井一趟多层负压射孔管柱. 石油钻采工艺. 2019(06): 718-721 . 百度学术
    4. 马金良,刘泽宇,李春宁,何新伟,雷国燕. 一趟管柱分层射孔与水力泵排液联作技术. 油气井测试. 2018(02): 22-26 . 百度学术
    5. 赵金龙. 油管输送射孔井下封井技术研究. 油气井测试. 2018(03): 46-51 . 百度学术
    6. 刘文凤,金海锋,麻惠杰,王春亮,杜强,夏汉玲. 埕海油田大位移井射孔与电潜泵联作试油技术. 油气井测试. 2018(05): 19-23 . 百度学术
    7. 张兴华,周新宇,杨子,卢中原,陈光峰,杜连龙. APR测试工艺在压裂测试井中的技术创新. 油气井测试. 2018(05): 13-18 . 百度学术
    8. 马金良,平恩顺,李金凤. 可反复开关投球滑套的研制. 油气井测试. 2017(03): 49-53+77 . 百度学术

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  451
  • PDF下载量:  119
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2020-12-03
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回