涪陵页岩气优质储层测井综合评价方法

陈四平, 谭判, 石文睿, 赵红燕

陈四平, 谭判, 石文睿, 赵红燕. 涪陵页岩气优质储层测井综合评价方法[J]. 石油钻探技术, 2020, 48(4): 131-138. DOI: 10.11911/syztjs.2020091
引用本文: 陈四平, 谭判, 石文睿, 赵红燕. 涪陵页岩气优质储层测井综合评价方法[J]. 石油钻探技术, 2020, 48(4): 131-138. DOI: 10.11911/syztjs.2020091
CHEN Siping, TAN Pan, SHI Wenrui, ZHAO Hongyan. A Comprehensive Logging Evaluation Method for High Quality Shale Gas Reservoirs in Fuling[J]. Petroleum Drilling Techniques, 2020, 48(4): 131-138. DOI: 10.11911/syztjs.2020091
Citation: CHEN Siping, TAN Pan, SHI Wenrui, ZHAO Hongyan. A Comprehensive Logging Evaluation Method for High Quality Shale Gas Reservoirs in Fuling[J]. Petroleum Drilling Techniques, 2020, 48(4): 131-138. DOI: 10.11911/syztjs.2020091

涪陵页岩气优质储层测井综合评价方法

基金项目: 国家科技重大专项“深层页岩气开发关键装备与工具应用”(编号:2016ZX05038-006)和中国石化集团科研项目“涪陵页岩气优质储层测录井精细评价及应用”(编号:JP17033)资助
详细信息
    作者简介:

    陈四平(1964—),男,湖北潜江人,1987年毕业于江汉石油学院测井专业,2003年获中国地质大学(武汉)石油工程专业硕士学位,高级工程师,主要从事页岩气气勘探与开发工作。E-mail:chensp.osjh@sinopec.com

  • 中图分类号: P631.8+1

A Comprehensive Logging Evaluation Method for High Quality Shale Gas Reservoirs in Fuling

  • 摘要:

    为了准确评价涪陵页岩气田地质与工程“双优”储层,首先定性分析了气田试气资料与地质、工程评价参数的关系,并采用欧式距离方法聚类分析了各评价参数的重要程度,优选出评价优质储层的地质和工程参数;然后,选择岩心化验分析资料和测井资料,采用“岩心刻度测井技术”建立了地质与工程“双优”储层的测井评价模型;最后,利用产气剖面测试资料,运用灰度关联理论确定“双优”储层评价参数的权重,计算页岩气储层地质和工程指数,进而建立“双优”储层综合评价图版,形成了页岩气地质与工程“双优”储层测井综合评价方法。利用该方法计算了涪陵页岩气田平桥区块28口井储层的综合评价指数,结果表明,页岩气储层单段和单井产量与综合评价指数、双优储层穿行长度具有明显的正相关关系。这表明,可以用构建的页岩气地质与工程“双优”储层综合测井评价方法评价页岩气储层,为页岩气水平井设计和分段压裂提供依据。

    Abstract:

    In order to evaluate the “2X excellence” reservoirs in geology and engineering in Fuling Shale Gas Field with high quality and accuracy, the relationship between well testing data and geological/engineering evaluation parameters in the gas field was qualitatively analyzed, and then the geological/engineering parameters were selected through the European distance-squared systematic clustering method. On the basis of core test analysis data and logging data of the gas field, the logging evaluation model of geological and engineering “2X excellence” reservoir was established by using core calibration logging technology. Finally, the shale gas reservoir geological index and engineering index were calculated to establish the comprehensive evaluation chart of “2X excellence” reservoir by combining the gas producing profile logging data and using the gray correlation theory in the gas field, so as to determine the weight of the “2X excellence” reservoir parameters for production evaluation, forming the comprehensive evaluation method of such reservoir in shale gas geology and engineering. The comprehensive evaluation index of 28 wells in the Pingqiao Block of the Fuling Shale Gas Field has been evaluated by this method, and showed that the production of a single section and a single well of shale gas possessing a significant positive correlation with the comprehensive evaluation index and the crossing length in “2X Excellence” reservoir, which indicates that the shale gas reservoir could be evaluated by the proposed comprehensive logging evaluation method of shale gas geological and engineering the “2X Excellence” reservoir, and provide basis for shale gas horizontal well design and staged fracturing.

  • 图  1   地质参数聚类图谱

    Figure  1.   Clustering map of geological parameters

    图  2   地质参数聚类分析结果

    Figure  2.   Clustering analysis result of geological parameters

    图  3   工程参数聚类图谱

    Figure  3.   Clustering map of engineering parameters

    图  4   工程参数聚类分析结果

    Figure  4.   Clustering analysis result of engineering parameters

    图  5   页岩气储层地质–工程指数评价图版

    Figure  5.   Geological-engineering index evaluation chart of shale gas reservoir

    图  6   焦页W井综合评价指数成果图

    Figure  6.   Comprehensive evaluation index results of Well Jiaoye W

    图  7   单井测试产气量与综合评价指数的关系

    Figure  7.   Relationship between single well test gas production and comprehensive evaluation index

    图  8   测试产气量与综合评价指数、双优储层穿行长度的关系

    Figure  8.   Relationship among test gas production and comprehensive evaluation index, crossing length in “2X Excellence” reservoir

    表  1   地质参数相关性矩阵

    Table  1   Correlation matrix of geological parameters

    参数产量岩性岩相泥质
    含量
    生物成因
    硅质含量
    含气量含水饱
    和度
    电阻率总有机碳
    含量
    地化总烃
    含量
    镜质体
    反射率
    补偿
    密度
    声波
    时差
    孔隙度
    产量1.000
    岩性–0.5991.000
    岩相–0.5940.6151.000
    泥质含量0.2310.138–0.6161.000
    生物成因
    硅质含量
    0.893–0.196–0.6660.2161.000
    含气量0.5830.194–0.9430.5190.7831.000
    含水饱和度–0.5570.0490.4890.326–0.627–0.6271.000
    电阻率–0.524–0.1700.858–0.920–0.782–0.7820.0551.000
    总有机碳含量0.845–0.287–0.8180.1580.8350.835–0.835–0.5321.000
    地化总烃含量–0.602–0.2220.868–0.659–0.953–0.9530.4630.856–0.7281.000
    镜质体反射率0.871–0.641–0.391–0.2470.4050.405–0.777–0.1110.833–0.3111.000
    补偿密度–0.5930.4560.750–0.101–0.592–0.5920.6000.411–0.8110.382–0.6661.000
    声波时差0.821–0.344–0.8680.2330.8250.825–0.754–0.5900.983–0.7000.789–0.8921.000
    孔隙度0.777–0.192–0.7960.0810.8420.842–0.894–0.4640.990–0.7140.810–0.7910.9611.000
    下载: 导出CSV

    表  2   工程参数相关性矩阵

    Table  2   Correlation matrix of engineering parameters

    参数产量非均质性地层压力石英含量烃对比系数杨氏模量脆性指数泊松比破裂压力水平应力差异系数
    产量1.000
    非均质性0.5101.000
    地层压力0.9280.7621.000
    石英含量0.9050.7160.9891.000
    烃对比系数0.2960.7990.4310.3121.000
    杨氏模量0.2440.8210.4100.2980.9961.000
    脆性指数0.6190.4100.4830.3560.7220.6551.000
    泊松比–0.5780.138–0.262–0.179–0.169–0.076–0.8021.000
    破裂压力–0.9900.458–0.921–0.920–0.174–0.127–0.5040.5141.000
    水平应力差异系数0.7580.4940.6410.5290.6940.6280.981–0.786–0.6591.000
    下载: 导出CSV

    表  3   地质参数评价赋分标准

    Table  3   Scoring criteria for geological parameters evaluation

    生物成因硅质含量,%总有机碳含量,%含气量/(m3·t1有效孔隙度,%泥质含量,%补偿密度/(g·cm3赋分
    [30, 100)[4, 100)[4, ∞)[5.0, 100.0)(0, 40](0, 2.50](1.00, 0.75]
    (30, 15](4, 2](4, 2](5.0, 3.5](40, 45](2.50, 2.60](0.75, 0.50]
    (15, 5](2, 1](2, 1](3.5, 2.5](45, 50](2.60, 2.68](0.50, 0.25]
    (0, 5)(0, 1)(0, 1)(0, 2.5)(50, 100)(2.68, ∞)[0, 0.25)
    下载: 导出CSV

    表  4   工程参数评价赋分标准

    Table  4   Scoring criteria for engineering parameters evaluation

    岩性非均质性系数烃对比系数地层压力系数脆性指数,%地应力差异系数石英含量,%赋分
    (0, 8][10,∞)[1.5, ∞)[60, 100)(0~0.3][40, 100)(1.00, 0.75]
    (8, 15](10, 5](1.5, 1.2](60, 40](0.3, 0.4](40, 20](0.75, 0.50]
    (15, 30](5, 3](1.2, 1.0](40, 30](0.4, 0.5](20, 10](0.50, 0.25]
    (30, ∞)(0, 3)(0, 1)(0, 30)(0.5, ∞)(0, 10)[0.25, 0)
    下载: 导出CSV
  • [1] 乔辉,贾爱林,贾成业,等. 页岩气储层关键参数评价及进展[J]. 地质科技情报, 2018, 37(2): 157–164.

    QIAO Hui, JIA Ailin, JIA Chengye, et al. Research progress in key parameters of shale gas reservoir evaluation[J]. Geological Science and Technology Information, 2018, 37(2): 157–164.

    [2] 杨瑞召,赵争光,庞海玲,等. 页岩气富集带地质控制因素及地震预测方法[J]. 地学前缘, 2012, 19(5): 339–347.

    YANG Ruizhao, ZHAO Zhengguang, PANG Hailing, et al. Shale gas sweet spots: geological controlling factors and seismic prediction methods[J]. Earth Science Frontiers, 2012, 19(5): 339–347.

    [3] 万玉金,李熙喆,卢斌,等. Fayetteville页岩气开发实践与启示[J]. 天然气地球科学, 2019, 30(11): 1655–1666. doi: 10.11764/j.issn.1672-1926.2019.11.015

    WAN Yujin, LI Xizhe, LU Bin, et al. The development of fayetteville shale play and its implications[J]. Natural Gas Geoscience, 2019, 30(11): 1655–1666. doi: 10.11764/j.issn.1672-1926.2019.11.015

    [4]

    HASHMY K H, ABUEITA S, BARNETT C, et al. Log-based identification of sweet spots for effective fracs in shale reservoirs[R]. SPE 149278, 2011.

    [5] 余杰, 秦瑞宝, 刘春成, 等. 页岩气储层测井评价与产量“甜点”识别:以美国鹰潭页岩气储层为例[J]. 中国石油勘探, 2017, 22(3): 104–112. doi: 10.3969/j.issn.1672-7703.2017.03.013

    YU Jie, QIN Ruibao, LIU Chuncheng, et al. Logging evaluation and production “sweet spot” identification of shale play: a case study on Eagle Ford shale play in the USA[J]. China Petroleum Exploration, 2017, 22(3): 104–112. doi: 10.3969/j.issn.1672-7703.2017.03.013

    [6]

    EASTWOOD R L, HAMMES U. Log model development for the Bossier and Haynesville shales[R]. SPWLA-2011-L, 2011.

    [7] 王龙,张金川,唐玄. 鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究[J]. 中国石油勘探, 2019, 24(1): 129–136. doi: 10.3969/j.issn.1672-7703.2019.01.014

    WANG Long, ZHANG Jinchuan, TANG Xuan. Logging evaluation and distribution law of Chang 7 shale gas in Xiasiwan-Yunyan Area, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(1): 129–136. doi: 10.3969/j.issn.1672-7703.2019.01.014

    [8] 廖东良,路保平,陈延军. 页岩气地质甜点评价方法:以四川盆地焦石坝页岩气田为例[J]. 石油学报, 2019, 40(2): 144–151. doi: 10.7623/syxb201902002

    LIAO Dongliang, LU Baoping, CHEN Yanjun. Shale gas geological dessert evaluation method: a case study of the Jiaoshiba Shale Gas Field in Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144–151. doi: 10.7623/syxb201902002

    [9] 夏宏泉,刘畅,王瀚玮,等. 页岩含气量测井评价方法研究[J]. 特种油气藏, 2019, 26(3): 1–6. doi: 10.3969/j.issn.1006-6535.2019.03.001

    XIA Hongquan, LIU Chang, WANG Hanwei, et al. Logging evaluation of shale gas content[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 1–6. doi: 10.3969/j.issn.1006-6535.2019.03.001

    [10] 淮银超,曲良超,张铭,等. 基于测井资料的页岩含气量评价方法[J]. 科学技术与工程, 2017, 17(29): 33–38. doi: 10.3969/j.issn.1671-1815.2017.29.005

    HUAI Yinchao, QU Liangchao, ZHANG Ming, et al. Evaluation method of shale gas content based on logging data[J]. Science Technology and Engineering, 2017, 17(29): 33–38. doi: 10.3969/j.issn.1671-1815.2017.29.005

    [11] 彭超,唐军,冯爱国,等. 涪陵页岩气储层含气性测井评价[J]. 科学技术与工程, 2017, 17(2): 190–196. doi: 10.3969/j.issn.1671-1815.2017.02.033

    PENG Chao, TANG Jun, FENG Aiguo, et al. Gas content ability evaluation by logging technology in Fuling Shale Gas Reservoir[J]. Science Technology and Engineering, 2017, 17(2): 190–196. doi: 10.3969/j.issn.1671-1815.2017.02.033

    [12] 廖勇,谭判,石文睿,等. 涪陵页岩气储层产气性评价方法[J]. 石油钻探技术, 2018, 46(5): 69–75.

    LIAO Yong, TAN Pan, SHI Wenrui, et al. An evaluation method for gas production property for shale gas reservoirs in the Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(5): 69–75.

    [13]

    ALGARHY A, BATEMAN R M, SOLIMAN M Y. An innovative technique to evaluate shale sweet spots: a case study from North Africa[R]. SPWLA-2015-WW, 2015.

    [14]

    YU Gang, ZHANG Yusheng, WANG Ximing, et al. Shale-gas reservoir characterization and sweet-spot prediction[R]. SEG 16928227, 2017.

    [15]

    CLOSE D, PEREZ M, GOODWAY B, et al. Integrated workflows for shale gas and case study results for the Horn River Basin, British Columbia, Canada[J]. The Leading Edge, 2012, 31(5): 556–569. doi: 10.1190/tle31050556.1

    [16] 周德华,焦方正. 页岩气“甜点”评价与预测:以四川盆地建南地区侏罗系为例[J]. 石油实验地质, 2012, 34(2): 109–114. doi: 10.3969/j.issn.1001-6112.2012.02.001

    ZHOU Dehua, JIAO Fangzheng. Evaluation and prediction of shale gas sweet spots: a case study in Jurassic of Jiannan Area, Sichuan Basin[J]. Petroleum Geology and Experiment, 2012, 34(2): 109–114. doi: 10.3969/j.issn.1001-6112.2012.02.001

    [17] 陈颖杰,刘阳,徐婧源,等. 页岩气地质工程一体化导向钻井技术[J]. 石油钻探技术, 2015, 43(5): 56–62.

    CHEN Yingjie, LIU Yang, XU Jingyuan, et al. Integrated steering drilling technology for shale gas geological engineering[J]. Petroleum Drilling Techniques, 2015, 43(5): 56–62.

    [18] 张磊夫,董大忠,孙莎莎,等. 三维地质建模在页岩气甜点定量表征中的应用:以扬子地区昭通页岩气示范区为例[J]. 天然气地球科学, 2019, 30(9): 1332–1340. doi: 10.11764/j.issn.1672-1926.2019.05.024

    ZHANG Leifu, DONG Dazhong, SUN Shasha, et al. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: case study of Zhaotong National Demonstration Area of Yangtze Region[J]. Natural Gas Geoscience, 2019, 30(9): 1332–1340. doi: 10.11764/j.issn.1672-1926.2019.05.024

    [19] 刘伟, 梁兴, 姚秋昌, 等.四川盆地昭通区块龙马溪组页岩气“甜点”预测方法及应用[J].石油地球物理勘探, 2018, 53(增刊2): 211–217, 223.

    LIU Wei, LIANG Xing, YAO Qiuchang, et al. Prediction method and application of shale gas “dessert” in Longmaxi Formation, Zhaotong Block, Sichuan Basin[J]. Oil Geophysical Prospecting, 2018, 53(supplement 2): 211–217, 223.

    [20] 黄进,吴雷泽,游园,等. 涪陵页岩气水平井工程甜点评价与应用[J]. 石油钻探技术, 2016, 44(3): 16–20.

    HUANG Jin, WU Leize, YOU Yuan, et al. The evaluation and application of engineering sweet spots in a horizontal well in the Fuling Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2016, 44(3): 16–20.

  • 期刊类型引用(8)

    1. 刘搏,蒋建方,闫琦睿,褚占宇,刘金栋. 压裂支撑剂在水平井内输送规律实验研究. 石油化工应用. 2025(04): 16-22 . 百度学术
    2. 闫琦睿,蒋建方,刘搏,褚占宇,刘金栋. 大排量压裂组合粒径支撑剂铺置效果研究. 石油地质与工程. 2024(06): 112-119 . 百度学术
    3. 陈立超,张典坤,吕帅锋,肖宇航,王生维. 内蒙古西部沙漠砂支撑力学性能及压裂工程意义. 材料导报. 2024(S2): 147-153 . 百度学术
    4. 王治国,陈志畅,仝少凯,贾栋尧,罗向荣,苏晓辉. 支撑剂在纳米改性VES压裂液中的运移特性. 当代化工. 2023(01): 193-197 . 百度学术
    5. 马代兵,陈立超. 煤层气直井压裂效果及其对产能影响——以窑街矿区为例. 煤炭科学技术. 2023(06): 130-136 . 百度学术
    6. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 . 百度学术
    7. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 . 百度学术
    8. 张潇,刘欣佳,田永东,张遂安,连浩宇,郑伟博,马雄强. 水力压裂支撑剂铺置形态影响因素研究. 特种油气藏. 2021(06): 113-120 . 百度学术

    其他类型引用(2)

图(8)  /  表(4)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  313
  • PDF下载量:  86
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-12-22
  • 修回日期:  2020-06-10
  • 网络出版日期:  2020-06-21
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回