Jia Changgui, Lu Baoping, Jiang Tingxue, Li Zhenxiang. Multi-Stage Horizontal Well Fracturing Technology in Deep Shale Gas Well DY2HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85-90. DOI: 10.3969/j.issn.1001-0890.2014.02.017
Citation: Jia Changgui, Lu Baoping, Jiang Tingxue, Li Zhenxiang. Multi-Stage Horizontal Well Fracturing Technology in Deep Shale Gas Well DY2HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85-90. DOI: 10.3969/j.issn.1001-0890.2014.02.017

Multi-Stage Horizontal Well Fracturing Technology in Deep Shale Gas Well DY2HF

More Information
  • Received Date: January 11, 2014
  • Revised Date: February 24, 2014
  • Well DY2HF is a key exploration well in Dingshan Longmaxi marine shale gas reservoir featuring in high temperature and ultra high stress.In order to overcome the challenge of high injection pressure and difficult proppant injection,multi-stage fracturing technology of horizontal well in the deep shale gas reservoir has been developed.According to the characteristics of Dingshan shale,wellhead injection pressure and pumping rate were optimized,mutiple fracture coverage ratio model for horizontal section was established,and fracturing stages and clusters were optimized on the basis of induced stress analysis result.According to the demands of shale gas network fracturing technology and specific characteristics of this well,high friction reduction and low damage hybrid fluid of slick water and low surfactant tension gel was used as fracturing fluid,together with low-density and high-strength coated ceramic proppant in combined meshes.Fracturing parameters were also optimized through numerical simulation.DY2HF deep shale gas horizontal well fracturing was successfully performed under the limited wellhead pressure,95 MPa,with a cumulative fracturing fluid volume of 29,516 m3,cumulative proppant volume of 319 m3,maximum pumping rate of 13.6 m3/min,friction reduction rate of slick water of up to 78%,and complete hydration of post-frac gel.Industrial gas production was reached,which marked a breakthrough in multi-stage horizontal well fracturing of deep shale gas reservoirs.The treatment result indicates that deep shale gas reservoirs like Dingshan are capable of being effectively developed under the present fracturing technology and equipment.
  • [1]
    Jin Liang,Zhu Changlong,Yong Quyang,et al.Successful fracture stimulation in the first joint appraisal shale gas project in China[R].IPTC 16762,2013.
    [2]
    路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. Lu Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8.
    [3]
    周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. Zhou Dehua,Jiao Fangzheng,Jia Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80.
    [4]
    周德华,焦方正,郭旭升,等.川东南涪陵地区下侏罗统页岩油气地质特征[J].石油与天然气地质,2013,34(8):450-454. Zhou Dehua,Jiao Fangzheng,Guo Xusheng,et al.Geological features of the Lower Jurassic shale gas play in Fuling Area,the southeastern Sichuan Basin[J].Oil Gas Geology,2013,34(8):450-454.
    [5]
    King G E.Thirty years of gas shale fracturing:what have we learned?[R].SPE 133456,2010.
    [6]
    贾长贵,李双明,王海涛,等.页岩储层网络压裂技术研究与试验[J].中国工程科学,2012,14(6):106-112. Jia Changgui,Li Shuangming,Wang Haitao,et al.Shale reservoir network fracturing research and experiment[J].China Engineering Science,2012,14(6):106-112.
    [7]
    Cipolla C L,Warpinski N R,Mayerhofer M J,et al.The relationship between fracture complexity,reservoir properties,and fracture-treatment design[R].SPE 115769,2010.
    [8]
    蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术,2011,39(3):36-40. Jiang Tingxue,Jia Changgui,Wang Haitao,et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques,2011,39(3):36-40.
    [9]
    张旭,蒋廷学,贾长贵,等.页岩气储层水力压裂物理模拟试验研究[J].石油钻探技术,2013,41(2):70-74. Zhang Xu,Jiang Tingxue,Jia Changgui,et al.Physical simulation of hydraulic fracturing of shale gas reservoir[J].Petroleum Drilling Techniques,2013,41(2):70-74.
    [10]
    陈勉.页岩气储层水力裂缝转向扩展机制[J].中国石油大学学报:自然科学版,2013,37(5):88-94. Chen Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(5):88-94.
    [11]
    曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. Zeng Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6.
    [12]
    刘红磊,熊炜,高应运,等.方深1井页岩气藏特大型压裂技术[J].石油钻探技术,2011,39 (3):46-52. Liu Honglei,Xiong Wei,Gao Yingyun,et al.Large scale fracturing technology of Fangshen 1 Shale Gas Well[J].Petroleum Drilling Techniques,2011,39(3):46-52.
    [13]
    Economides M J,Nolte K G.油藏增产措施[M].3版.张保平,蒋阗,刘立云,等,译.北京:石油工业出版社,2002:312-313. Economides M J,Nolte K G.Reservoir Stimulation[M].3rd ed.Zhang Baoping,Jiang Dian,Liu Liyun,et al,translated.Beijing:Petroleum Industry Press,2002:312-313.
    [14]
    贾长贵,苏瑗.页岩气高效变粘滑溜水压裂液研究与应用[J].油气田地面工程,2013,32(11):1-3. Jia Changgui,Su Yuan.Research and application on high reduction and adjustable viscosity slick water fracturing fluid for shale gas[J].Oil-Gasfield Surface Engineering,2013,32(11):1-3.
    [15]
    邹雨时,张士诚,马新仿.页岩气藏压裂支撑裂缝的有效性评价[J].天然气工业,2012,32(9):52-55. Zou Yushi,Zhang Shicheng,Ma Xinfang.Assessment on the effectiveness of propped fracturing of shale gas reservoirs[J].Natural Gas Industry,2012,32(9):52-55.
    [16]
    吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5): 65-68. Wu Guotao,Xu Yun,Yang Zhenzhou,et al.Numerical simulation considering the impact of proppant and its embedment degree on fracture flow conductivity[J].Natural Gas Industry,2013,33(5):65-68.
    [17]
    Mayerhofer M J,Lolon E P,Warpinski N R,et al.What is stimulated rock volume?[R].SPE 119890,2008.
    [18]
    Wang Y,Miskimins J L.Experimental investigations of hydraulic fracture growth complexity in slick water fracturing treatments[R].SPE 137515,2010.
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]ZHENG Chunfeng, WEI Chen, ZHANG Haitao, LI Ang, MENG Hongxia. A New Forecasting Model of a Wellbore Wax Deposition Profile in a Offshore Well[J]. Petroleum Drilling Techniques, 2017, 45(4): 103-109. DOI: 10.11911/syztjs.201704018
    [3]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [4]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [5]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [6]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [7]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
  • Cited by

    Periodical cited type(5)

    1. 王宏,赖枫鹏,张伟,陈野啸. 非均质低渗透气藏压裂直井产能计算. 断块油气田. 2019(06): 728-733 .
    2. 周杨,李莉,吴忠宝,甘俊奇,王俊文,刘翀. 低渗透油藏垂直裂缝井产能预测及分析. 石油钻采工艺. 2017(02): 146-150 .
    3. 秦钰铭. 大牛地气田盒1储层长水平段压裂工艺技术研究与应用. 断块油气田. 2015(05): 673-676 .
    4. 姚健欢. 不对称压裂气井非线性渗流产能影响因素分析. 石油地质与工程. 2015(03): 107-109 .
    5. 孙元伟,程远方,张矿生,常鑫,王怀栋. 考虑非达西效应的致密气藏裂缝参数优化设计. 石油钻探技术. 2014(06): 87-91 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (4593) PDF downloads (3946) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return