SUN Youhong, XU Liang, XUE Qilong, et al. Current status and prospects of key theories and technologies for marine deep drilling [J]. Petroleum Drilling Techniques, 2025, 53(3):1−10. DOI: 10.11911/syztjs.2025050
Citation: SUN Youhong, XU Liang, XUE Qilong, et al. Current status and prospects of key theories and technologies for marine deep drilling [J]. Petroleum Drilling Techniques, 2025, 53(3):1−10. DOI: 10.11911/syztjs.2025050

Current Status and Prospects of Key Theories and Technologies for Marine Deep Drilling

More Information
  • Received Date: January 18, 2025
  • Revised Date: May 04, 2025
  • Available Online: May 25, 2025
  • To address the challenges of safe drilling and speed improvement and efficiency enhancement in the development of marine deep oil and gas resources, this study systematically reviews the global research progress in marine deep drilling technologies. Through literature review and engineering case analysis, the core technical bottlenecks and development pathways of marine deep drilling were identified. The study reveals the common challenges in marine deep drilling, including high-temperature and high-pressure in reservoirs, low rock-breaking efficiency in hard formations, poor core quality, and difficulties in wellbore trajectory control, etc. While current technologies have achieved some phased breakthroughs in geothermal field prediction, high-temperature rock-breaking tools, long-barrel coring devices, and steering drilling systems, significant gaps still remain in the areas such as high-temperature rock breaking mechanisms, intelligent drilling measurement and control equipment, and long-term wellbore stability, etc. Based on full life cycle engineering requirements, five key research directions are proposed: establishing a multi-field coupled temperature prediction model for wellbores, developing hybrid polycrystalline diamond compact (PDC)/impregnated diamond cutter (DIC)rock-breaking tools, developing downhole motor-driven coring systems, designing fully mechanical high-temperature-resistant well inclination measurement and control structures, and developing high sealing and strong inhibition drilling fluid systems. These findings provide a systematic technological development framework and practical guidance for the safe and efficient development of marine deep oil and gas resources.

  • [1]
    赵文智,窦立荣. 中国陆上剩余油气资源潜力及其分布和勘探对策[J]. 石油勘探与开发,2001,28(1):1–5. doi: 10.3321/j.issn:1000-0747.2001.01.002

    ZHAO Wenzhi, DOU Lirong. Potential, distribution and exploration strategy of petroleum resources remained onshore China[J]. Petroleum Exploration and Development, 2001, 28(1): 1–5. doi: 10.3321/j.issn:1000-0747.2001.01.002
    [2]
    李剑,佘源琦,高阳,等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探,2019,24(4):403–417. doi: 10.3969/j.issn.1672-7703.2019.04.001

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403–417. doi: 10.3969/j.issn.1672-7703.2019.04.001
    [3]
    汪海阁,张佳伟,黄洪春,等. 墨西哥湾万米级特深井钻完井实践与启示[J]. 石油钻探技术,2024,52(2):12–23. doi: 10.11911/syztjs.2024121

    WANG Haige, ZHANG Jiawei, HUANG Hongchun, et al. Inspiration and practice of drilling and completion in 10 000-meter ultra-deep wells in the Gulf of Mexico[J]. Petroleum Drilling Techniques, 2024, 52(2): 12–23. doi: 10.11911/syztjs.2024121
    [4]
    张锦宏,张波,曹明,等. 中国石化“深地工程”油气测试关键技术及展望[J]. 石油钻探技术,2024,52(2):48–57. doi: 10.11911/syztjs.2024037

    ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. Key technologies and prospects for oil and gas testing in Sinopec’s “Deep Underground Engineering”[J]. Petroleum Drilling Techniques, 2024, 52(2): 48–57. doi: 10.11911/syztjs.2024037
    [5]
    李真祥. 通南巴构造超深高压气井钻井作业的难点及对策[J]. 天然气工业,2003,23(2):50–53. doi: 10.3321/j.issn:1000-0976.2003.02.014

    LI Zhenxiang. Difficulties and countermeasures of drilling ultra-deep and high-pressure gas wells in Tong-Nan-Ba structure[J]. Natural Gas Industry, 2003, 23(2): 50–53. doi: 10.3321/j.issn:1000-0976.2003.02.014
    [6]
    JIANG Guangzheng, HU Shengbiao, SHI Yizuo, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36–48. doi: 10.1016/j.tecto.2019.01.006
    [7]
    VESPASIANO G, MARINI L, MUTO F, et al. A multidisciplinary geochemical approach to geothermal resource exploration: the Spezzano Albanese thermal system, southern Italy[J]. Marine and Petroleum Geology, 2023, 155: 106407. doi: 10.1016/j.marpetgeo.2023.106407
    [8]
    CHATTERJEE S, DUTTA A, GUPTA R K, et al. Genesis, evolution, speciation and fluid-mineral equilibrium study of an unexplored geothermal area in Northeast Himalaya, India[J]. Geothermics, 2022, 105: 102483. doi: 10.1016/j.geothermics.2022.102483
    [9]
    CIONI R, MARINI L. A thermodynamic approach to water geothermometry[M]. Cham: Springer, 2020.
    [10]
    BATIR J F, BLACKWELL D D, RICHARDS M C. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration[J]. Journal of Geophysics and Engineering, 2016, 13(3): 366–378. doi: 10.1088/1742-2132/13/3/366
    [11]
    邱楠生,魏刚,李翠翠,等. 渤海海域现今地温场分布特征[J]. 石油与天然气地质,2009,30(4):412–419. doi: 10.3321/j.issn:0253-9985.2009.04.004

    QIU Nansheng, WEI Gang, LI Cuicui, et al. Distribution features of current geothermal field in the Bohai Sea waters[J]. Oil & Gas Geology, 2009, 30(4): 412–419. doi: 10.3321/j.issn:0253-9985.2009.04.004
    [12]
    张鸿阳. 渤海湾盆地清丰地区热储温度的变化规律研究[D]. 北京:中国地质大学(北京),2021.

    ZHANG Hongyang. Study on the variation of heat storage temperature in Bohai Bay Basin[D]. Beijing: China University of Geosciences(Beijing), 2021.
    [13]
    王良书,刘绍文,肖卫勇,等. 渤海盆地大地热流分布特征[J]. 科学通报,2002,47(2):151–155. doi: 10.3321/j.issn:0023-074X.2002.02.017

    WANG Liangshu, LIU Shaowen, XIAO Weiyong, et al. Distribution characteristics of terrestrial heat flow in the Bohai Basin[J]. Chinese Science Bulletin, 2002, 47(2): 151–155. doi: 10.3321/j.issn:0023-074X.2002.02.017
    [14]
    涂诗棋,左银辉,周勇水,等. 东濮凹陷现今地温场及地热资源潜力[J]. 断块油气田,2023,30(1):100–106.

    TU Shiqi, ZUO Yinhui, ZHOU Yongshui, et al. Present geothermal field and geothermal resource potential of the Dongpu Sag[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 100–106.
    [15]
    施亦做,王社教,肖红平,等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业,2022,42(4):46–53. doi: 10.3787/j.issn.1000-0976.2022.04.004

    SHI Yizuo, WANG Shejiao, XIAO Hongping, et al. 3D GeoModeller-based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry, 2022, 42(4): 46–53. doi: 10.3787/j.issn.1000-0976.2022.04.004
    [16]
    CALCAGNO P, BAUJARD C, GUILLOU−FROTTIER L, et al. Estimation of the deep geothermal potential within the Tertiary Limagne Basin (French Massif Central): an integrated 3D geological and thermal approach[J]. Geothermics, 2014, 51: 496–508. doi: 10.1016/j.geothermics.2014.02.002
    [17]
    程小桂. 基于机器学习的地温场预测研究:以塔里木台盆区为例[D]. 北京:中国石油大学(北京),2023.

    CHENG Xiaogui. Research on geothermal field prediction based on machine learning: a case in the central area of the Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2023.
    [18]
    罗昕. 塔里木盆地岩石热物性预测和现今地温场研究[D]. 北京:中国石油大学(北京),2021.

    LUO Xin. Prediction of rock thermophysical properties and current geothermal field research in Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2021.
    [19]
    BAI Lige, LI Jing, ZENG Zhaofa, et al. Prediction of terrestrial heat flow in Songliao Basin based on deep neural network[J]. Earth and Space Science, 2023, 10(12): e2023EA003186. doi: 10.1029/2023EA003186
    [20]
    柯婷婷,黄少鹏,许威,等. 关中盆地沣西地区地热对井采灌开发模式的数值模拟[J]. 第四纪研究,2019,39(5):1252–1263. doi: 10.11928/j.issn.1001-7410.2019.05.17

    KE Tingting, HUANG Shaopeng, XU Wei, et al. Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: a case study of Fengxi area, the Guanzhong Basin, NW China[J]. Quaternary Sciences, 2019, 39(5): 1252–1263. doi: 10.11928/j.issn.1001-7410.2019.05.17
    [21]
    张进平,杜建国,何铁柱. 基于Tough2软件的深部地温场模拟及影响因素分析:以苏北褶皱构造区为例[J]. 城市地质,2014,9(增刊1):35–40.

    ZHANG Jinping, DU Jianguo, HE Tiezhu. Simulation of geothermal field and influence factors in northern Jiangsu fold tectonic area based on Tough2 software[J]. Urban Geology, 2014, 9(supplement 1): 35–40.
    [22]
    陈金龙,罗文行,窦斌,等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报,2021,40(3):22–33.

    CHEN Jinlong, LUO Wenxing, DOU Bin, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22–33.
    [23]
    韩昀. 渤海湾盆地目标区块地热资源评价研究[D]. 北京:中国地质大学(北京),2021.

    HAN Yun. Evaluation of geothermal resources in target block of Bohai Bay Basin[D]. Beijing: China University of Geosciences(Beijing), 2021.
    [24]
    王志刚,胡志兴,李宽,等. 干热岩钻完井的挑战及技术展望[J]. 科技导报,2019,37(19):58–65.

    WANG Zhigang, HU Zhixing, LI Kuan, et al. Challenges and technical prospects of dry-hot rock drilling and completion[J]. Science & Technology Review, 2019, 37(19): 58–65.
    [25]
    高明洋,张凯,周琴,等. 高温硬地层钻进中PDC钻头切削齿磨损研究[J]. 探矿工程(岩土钻掘工程),2018,45(10):185–189.

    GAO Mingyang, ZHANG Kai, ZHOU Qin, et al. Wear of PDC cutters in high temperature hard formation drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(10): 185–189.
    [26]
    李忠慧,赵毅,楼一珊,等. 海洋深水井钻井过程中井筒温度的变化规律[J]. 天然气工业,2019,39(10):88–94. doi: 10.3787/j.issn.1000-0976.2019.10.011

    LI Zhonghui, ZHAO Yi, LOU Yishan, et al. Changing laws of wellbore temperature during offshore deepwater well drilling[J]. Natural Gas Industry, 2019, 39(10): 88–94. doi: 10.3787/j.issn.1000-0976.2019.10.011
    [27]
    陈浩,邦润,蔡灿,等. 深井高温岩石破岩机理及生热分析[J]. 石油机械,2021,49(1):1–10.

    CHEN Hao, BANG Run, CAI Can, et al. Rock breaking mechanisms and heat generation analysis on high temperature rocks in deep wells[J]. China Petroleum Machinery, 2021, 49(1): 1–10.
    [28]
    伍开松,柯行,龙巾帼. 热−结构耦合PDC单齿破岩温升规律研究[J]. 石油机械,2013,41(4):24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006

    WU Kaisong, KE Xing, LONG Jinguo. Research on the temperature rise law for single tooth rock-breaking of thermal structure coupling PDC bit[J]. China Petroleum Machinery, 2013, 41(4): 24–26. doi: 10.3969/j.issn.1001-4578.2013.04.006
    [29]
    吴海东. 高温条件下金刚石钻头钻进实验研究[D]. 长春:吉林大学,2017.

    WU Haidong. Experimental research on diamond bit drilling under high temperature[D]. Changchun: Jilin University, 2017.
    [30]
    朱永宜,王稳石,张恒春,等. 我国大陆科学钻探工程实施概况及其取心钻进技术体系[J]. 地质学报,2018,92(10):1971–1984. doi: 10.3969/j.issn.0001-5717.2018.10.001

    ZHU Yongyi, WANG Wenshi, ZHANG Hengchun, et al. Implementation overview of Chinese Continental Scientific Drilling (CCSD) project and technical systems of core boring[J]. Acta Geologica Sinica, 2018, 92(10): 1971–1984. doi: 10.3969/j.issn.0001-5717.2018.10.001
    [31]
    ZHU Yongyi, WANG Wenshi, WU Xiaoming, et al. Main technical innovations of Songke Well No.2 Drilling Project[J]. China Geology, 2018, 1(2): 187–201. doi: 10.31035/cg2018031
    [32]
    曹龙龙,张恒春,王稳石,等. 准噶尔盆地玛页1井长筒取心技术[J]. 钻探工程,2022,49(5):94–99. doi: 10.12143/j.ztgc.2022.05.013

    CAO Longlong, ZHANG Hengchun, WANG Wenshi, et al. Long barrel coring technology for Well Maye-1 in Junggar Basin[J]. Drilling Engineering, 2022, 49(5): 94–99. doi: 10.12143/j.ztgc.2022.05.013
    [33]
    康克利,李明,李浪. 中长筒取心技术在玛页1井的应用[J]. 新疆石油天然气,2020,16(1):38–40. doi: 10.3969/j.issn.1673-2677.2020.01.010

    KANG Keli, LI Ming, LI Lang. Application of medium-long tube coring technology in Well Maye-1[J]. Xinjiang Oil & Gas, 2020, 16(1): 38–40. doi: 10.3969/j.issn.1673-2677.2020.01.010
    [34]
    王建宁,艾中华,刘畅,等. 亚极地海域SW5井快速建井技术[J]. 长江大学学报(自然科学版),2015,12(8):47–50.

    WANG Jianning, AI Zhonghua, LIU Chang, et al. Rapid well construction technology in Well SW5, subpolar waters[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(8): 47–50.
    [35]
    耿旭占. 半潜式平台长筒取心的应用[J]. 石化技术,2020,27(11):52–53. doi: 10.3969/j.issn.1006-0235.2020.11.020

    GENG Xuzhan. Application of long barrel coring for semi submersible platform[J]. Petrochemical Industry Technology, 2020, 27(11): 52–53. doi: 10.3969/j.issn.1006-0235.2020.11.020
    [36]
    张伟. 德国大陆深钻计划实施情况介绍[J]. 国外地质勘探技术,1998(3):44–46.

    ZHANG Wei. Introduction to the implementation of the German Continental Deep Drilling Program[J]. Foreign Geoexploration Technology, 1998(3): 44–46.
    [37]
    张金昌. 科学超深井钻探技术方案预研究专题成果报告:第3分册[M]. 北京:地质出版社,2016:4-10.

    ZHANG Jinchang. Pre-research report on scientific ultra-deep well drilling technology solutions (volume 3)[M]. Beijing: Geological Publishing House, 2016: 4-10.
    [38]
    苏义脑. 油气直井防斜打快技术:理论与实践[M]. 北京:石油工业出版社,2003:62-67.

    SU Yinao. Deviation control and fast drilling technology for vertical wells in oil and gas: theory and practice[M]. Beijing: Petroleum Industry Press, 2003: 62-67.
    [39]
    张绍槐. 深井、超深井和复杂结构井垂直钻井技术[J]. 石油钻探技术,2005,33(5):11–15. doi: 10.3969/j.issn.1001-0890.2005.05.003

    ZHANG Shaohuai. Vertical drilling technologies in deep, ultra-deep, and complex structure wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 11–15. doi: 10.3969/j.issn.1001-0890.2005.05.003
    [40]
    LUBINSKI A, WOODS H B. Factors affecting the angle of inclination and dog-legging in rotary bore holes[J]. Drilling and Production Practice, 1953: 222-250.
    [41]
    HOCH R. A review of the crooked-hole problem and an analysis of packed bottom-hole drill-collar assemblies[J]. Drilling and Production Practice, 1962: 27-37.
    [42]
    BRAM K, DRAXLER J, HIRSCHMANN G, et al. The KTB borehole-Germany's superdeep telescope into the earth crust[J]. Oilfield Review, 1995, 7: 4–22.
    [43]
    REICH M, OESTERBERG M, MONTES H, et al. Straight down to success: performance review of a vertical drilling system[R]. SPE 84451, 2003.
    [44]
    SUGIURA J, BOWLER A, LOWDON R. Improved continuous azimuth and inclination measurement by use of a rotary-steerable system enhances downhole-steering automation and kickoff capabilities near vertical[J]. SPE Drilling & Completion, 2014, 29(2): 226–235.
    [45]
    COMEAUX B, GIBB J, KIRKHOPE K, et al. New automatic vertical drilling system for high temperature, harsh environment and performance drilling applications[R]. OMC 2007-052, 2007.
    [46]
    JONES S, FEDDEMA C, CASTRO J, et al. Fully mechanical vertical drilling system delivers RSS performance in vertical drilling applications while providing an economical alternative to conventional rotary steerable systems set-up for vertical hold mode[R]. SPE 178788, 2016.
    [47]
    韩来聚,倪红坚,赵金海,等. 机械式自动垂直钻井工具的研制[J]. 石油学报,2008,29(5):766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025

    HAN Laiju, NI Hongjian, ZHAO Jinhai, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008, 29(5): 766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025
    [48]
    苏义脑,季细星. 井眼轨道控制系统控制原理分析[J]. 石油学报,1996,17(4):109–113. doi: 10.3321/j.issn:0253-2697.1996.04.016

    SU Yinao, JI Xixing. Control principle analysis of bit trajectory control systems[J]. Acta Petrolei Sinica, 1996, 17(4): 109–113. doi: 10.3321/j.issn:0253-2697.1996.04.016
    [49]
    李松林. 井下闭环自动旋转导向控制工具的初步研究与自动垂直钻井工具的设计[D]. 北京:中国石油勘探开发研究院,2000.

    LI Songlin. Preliminary research on downhole closed-loop automatic rotary steering control tool and design of automatic vertical drilling tool[D]. Beijing: PetroChina Research Institute of Petroleum Exploration and Development, 2000.
    [50]
    刘白雁,陈新元,谢剑刚,等. 自动垂直钻井工具的理论与技术研究[J]. 武汉科技大学学报(自然科学版),2008,31(1):6–10.

    LIU Baiyan, CHEN Xinyuan, XIE Jiangang, et al. Theoretical and technical investigation of automatic vertical drilling tools[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2008, 31(1): 6–10.
    [51]
    艾才云,穆总结,宋朝晖,等. Φ311 mm垂直钻井系统的工作原理及现场应用[J]. 钻采工艺,2010,33(3):40–42.

    AI Caiyun, MU Zongjie, SONG Zhaohui, et al. Working principle and field application of Φ311 mm automatic vertical drilling system[J]. Drilling & Production Technology, 2010, 33(3): 40–42.
    [52]
    汝大军,杨士明,乔金中,等. BH-VDT5000垂直钻井系统在克深207井的应用[J]. 钻采工艺,2013,36(1):107–109. doi: 10.3969/J.ISSN.1006-768X.2013.01.33

    RU Dajun, YANG Shiming, QIAO Jinzhong, et al. Application of BH-VDT5000 vertical drilling system in Keshen 207 Well[J]. Drilling & Production Technology, 2013, 36(1): 107–109. doi: 10.3969/J.ISSN.1006-768X.2013.01.33
    [53]
    程福旺,王赞,孙雷,等. 渤海油田深层井壁稳定研究与应用[J]. 中国石油和化工标准与质量,2024,44(16):138–140. doi: 10.3969/j.issn.1673-4076.2024.16.047

    CHENG Fuwang, WANG Zan, SUN Lei, et al. Research and application of deep wellbore stability in Bohai Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(16): 138–140. doi: 10.3969/j.issn.1673-4076.2024.16.047
    [54]
    李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572.

    LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai Area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.
    [55]
    孙金声,杨景斌,白英睿,等. 深层超深层钻井液技术研究进展与展望[J]. 石油勘探与开发,2024,51(4):889–898. doi: 10.11698/PED.20240128

    SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Research progress and development of deep and ultra-deep drilling fluid technology[J]. Petroleum Exploration and Development, 2024, 51(4): 889–898. doi: 10.11698/PED.20240128
    [56]
    郭浩,易鹏昌,张立权,等. 北部湾深层深井油基钻井液研究及现场应用[J]. 化学工程师,2024,38(1):42–46.

    GUO Hao, YI Pengchang, ZHANG Liquan, et al. Research and field application of oil-based drilling fluid in deep well of Beibu Gulf[J]. Chemical Engineer, 2024, 38(1): 42–46.
    [57]
    倪晓骁,蒋官澄,王建华,等. 油基钻井液用憎液性纳米封堵剂[J]. 钻井液与完井液,2021,38(3):298–304.

    NI Xiaoxiao, JIANG Guancheng, WANG Jianhua, et al. Study on a lyophobic nanophase plugging agent for oil base muds[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 298–304.
  • Related Articles

    [1]CAO Hui, LI Baojun, ZHAO Xiangyang. Drilling Fluid Technology for Horizontal Wells in Ecuador Tambococha Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 54-59. DOI: 10.11911/syztjs.2021104
    [2]LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
    [3]LI Xiong, LIU Guichuan. An Optimization Method for Bentonite Used for Drilling Fluid Based on Characteristic Diamond Diagram[J]. Petroleum Drilling Techniques, 2018, 46(4): 59-64. DOI: 10.11911/syztjs.2018108
    [4]SHI Bingzhong, XIE Chao, LI Sheng, LIU Jinhua, CHEN Xiaofei. Development and Application of Drilling Fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37-41. DOI: 10.11911/syztjs.201706007
    [5]Zhang Zhicai, Zhao Huaizhen, Ci Guoliang, Li Jun, Ji Yibing. Drilling Fluid in Zhuang 129-1HF Extended Reach Well Drilling[J]. Petroleum Drilling Techniques, 2014, 42(6): 34-39. DOI: 10.11911/syztjs.201406007
    [6]Zhang Hao, Zhang Bin, Xu Guojin. Applications of Zwitterionic Polymer HRH Drilling Fluid in Linpan Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 57-63. DOI: 10.3969/j.issn.1001-0890.2014.02.012
    [7]Ren Liwei, Xia Bairu, Tang Wenquan, Song Zhaohui. Drilling Fluid Technology for Deep Troublesome Formation of Y Oilfield in Iran[J]. Petroleum Drilling Techniques, 2013, 41(4): 92-96. DOI: 10.3969/j.issn.1001-0890.2013.04.020
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [9]Zhang Zuoqing, Dou Jintao, Fu Jianguo, Pu Jie, Wu Yingzhang. Drilling Fluid Research for Paleogene Strata in Yingmaili Area[J]. Petroleum Drilling Techniques, 2013, 41(2): 54-58. DOI: 10.3969/j.issn.1001-0890.2013.02.011
    [10]Peng Shengyu, Geng Tie, Chen Zhonghua, Sun Qiang, Duan Lianchao. Drilling Fluid for Tuff Formation in Block C2 of Myanmar[J]. Petroleum Drilling Techniques, 2012, 40(6): 115-118. DOI: 10.3969/j.issn.1001-0890.2012.06.024
  • Cited by

    Periodical cited type(5)

    1. 朱方辉,郑力会,王宪文,王治国,魏攀峰,陶秀娟. 地质-工程-材料参数融合提高低压气井单井作业一次成功率. 石油钻采工艺. 2024(06): 667-680 .
    2. 王克林,刘洪涛,何文,何新兴,高文祥,单锋. 库车山前高温高压气井完井封隔器失效控制措施. 石油钻探技术. 2021(02): 61-66 . 本站查看
    3. 康红兵,牛骋程,贾虎,高定祥,代昌楼. 顺北油田抗超高温柔性胶粒修井液. 钻井液与完井液. 2021(04): 525-530 .
    4. 罗有刚,巨亚锋,王尚卫,杨义兴,江智强,王嘉鑫. 纳米复合泡沫凝胶修井液的研制与试验. 钻井液与完井液. 2020(01): 127-132 .
    5. 赵全民,何汉平,何青水,陈向军,王宝峰. 哈萨克斯坦SIPC油田开发主要问题与技术对策. 石油钻探技术. 2019(04): 92-96 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (96) PDF downloads (31) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return