WANG Kelin, LIU Hongtao, HE Wen, HE Xinxing, GAO Wenxiang, SHAN Feng. Failure Control of Completion Packer in the High Temperature and High Pressure Gas Well of Kuqa Piedmont Structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61-66. DOI: 10.11911/syztjs.2020128
Citation: WANG Kelin, LIU Hongtao, HE Wen, HE Xinxing, GAO Wenxiang, SHAN Feng. Failure Control of Completion Packer in the High Temperature and High Pressure Gas Well of Kuqa Piedmont Structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61-66. DOI: 10.11911/syztjs.2020128

Failure Control of Completion Packer in the High Temperature and High Pressure Gas Well of Kuqa Piedmont Structure

More Information
  • Received Date: March 31, 2020
  • Revised Date: October 14, 2020
  • Available Online: January 08, 2021
  • The Y443-111 packer was mainly used in the high-temperature and high-pressure (HTHP) gas wells in the Kuqa Piedmont structure , and it was prone to build the pressure during fluid displacement. In serious cases, the packer was set ahead of time, resulting in the test drilling fluids failed to be completely replaced by annulus protection fluid, which could cause the corrosion of tubing and casing. In view of the above problems, the causes of the failure of Y443-111 packer during fluid replacement were analyzed. It was found that the main factor was the small size of gap between the packer and the casing, and the secondary factors were the high displacement rate of fluid and the poor cleanliness of the wellbore. For these reasons, measures such as reducing fluid displacement rate and the outer diameter of the packer, cleaning up the wellbore impurities, optimizing the properties of oil based drilling fluids, and improving the quality of wellbore operation fluids were taken. These measures had been applied in the field for 43 wells with a success rate of 97.6%, which effectively controlled the packer failure of HTHP gas wells in the Kuqa Piedmont structure and ensured the safe downhole operations and smooth well completions.
  • [1]
    田军. 超深油气井试油与完井投产技术[M]. 北京: 石油工业出版社, 2019: 11–13.

    TIAN Jun. Well testing and completion in the ultra-deep oil and gas wells[M]. Beijing: Petroleum Industry Press, 2019: 11–13.
    [2]
    SHADRAVAN A, TARRAHI M. HPHT 101: what every engineer or geoscientist should know about high pressure high temperature wells[R]. SPE 163376, 2012.
    [3]
    赵全民,李燕,刘浩亚,等. SXJD-I型低伤害暂堵修井液技术[J]. 石油钻探技术,2019,47(2):109–113. doi: 10.11911/syztjs.2019046

    ZHAO Quanmin, LI Yan, LIU Haoya, et al. The technology of SXJD-I type low damage temporary plugging workover fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 109–113. doi: 10.11911/syztjs.2019046
    [4]
    孟瑄,杨宪民. 修井作业中保护裂缝性储层的暂堵技术[J]. 石油钻探技术,2013,41(1):51–55. doi: 10.3969/j.issn.1001-0890.2013.01.010

    MENG Xuan, YANG Xianmin. A temporary plugging technology to protect the fractured reservoir during workover[J]. Petroleum Drilling Techniques, 2013, 41(1): 51–55. doi: 10.3969/j.issn.1001-0890.2013.01.010
    [5]
    李明飞,窦益华,曹银萍,等. 力法在多封隔器管柱轴向力分析中的应用[J]. 西安石油大学学报(自然科学版),2020,35(1):89–96.

    LI Mingfei, DOU Yihua, CAO Yinping, et al. Application of force method to axial force analysis of multi-packer tubing[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2020, 35(1): 89–96.
    [6]
    朱达江,林元华,邹大鹏,等. CO2驱注气井封隔器橡胶材料腐蚀力学性能研究[J]. 石油钻探技术,2014,42(5):126–130.

    ZHU Dajiang, LIN Yuanhua, ZOU Dapeng, et al. Experimental study on the impact of corrosion on the rubber in packers in a CO2 injection well[J]. Petroleum Drilling Techniques, 2014, 42(5): 126–130.
    [7]
    ISTRE T, HAJIANMALEKI M, CHRETIEN T, et al. Case study: deepwater design, verification, and validation testing for production packers in HPHT environments[R]. OTC 29055, 2018.
    [8]
    DENG Guijun, DOANE J C, RUFFO A, et al. Design verification, optimization and validation of ultra-HPHT completion and production tools[R]. SPE 166231, 2013.
    [9]
    鞠少栋,付利,孔学云,等. 井下封隔器设计分析软件开发[J]. 石油矿场机械,2015,44(10):38–41. doi: 10.3969/j.issn.1001-3482.2015.10.009

    JU Shaodong, FU Li, KONG Xueyun, et al. Development of design and analysis software for down hole packers[J]. Oil Field Equipment, 2015, 44(10): 38–41. doi: 10.3969/j.issn.1001-3482.2015.10.009
    [10]
    API SPEC 11D1-2015 packers and bridge plugs[S].
    [11]
    杨树人, 崔海清. 石油工程非牛顿流体力学[M]. 北京: 石油工业出版社, 2013: 80–84.

    YANG Shuren, CUI Haiqing. Non Newtonian fluid mechanics of petroleum engineering[M]. Beijing: Petroleum Industry Press, 2013, 80–84.
    [12]
    巴旦,王磊,乔雨,等. STSW完井液在Tkes16井的应用[J]. 钻采工艺,2017,40(2):86–88. doi: 10.3969/J.ISSN.1006-768X.2017.02.26

    BA Dan, WANG Lei, QIAO Yu, et al. Application of STSW completion fluid on Well Tkes16[J]. Drilling & Production Technology, 2017, 40(2): 86–88. doi: 10.3969/J.ISSN.1006-768X.2017.02.26
  • Related Articles

    [1]ZANG Chuanzhen, JING Silin, LU Zongyu, SONG Xianzhi, WU Xingyong. Cuttings Removal Efficiency for Slim-Hole Horizontal Well Washing[J]. Petroleum Drilling Techniques, 2024, 52(3): 75-83. DOI: 10.11911/syztjs.2024009
    [2]WANG Wenchang, XU Zukai, ZHOU Xing, WANG Zhaobin, CHEN Feng. Dynamic Fatigue Failure Characteristics and Parameter Optimization ofDrill Strings in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 118-125. DOI: 10.11911/syztjs.2024033
    [3]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [4]CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005
    [5]CHEN Cunliang, MA Kuiqian, WANG Xiang, YUE Honglin, WU Xiaohui. Research on the Planar Equilibrium Displacement Based on Maximum Water Injection Efficiency[J]. Petroleum Drilling Techniques, 2021, 49(3): 124-128. DOI: 10.11911/syztjs.2021028
    [6]SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010
    [7]SHAO Dongdong, LI Wei, JIANG Xiaoping, LIU Ya, LIU Sihan. Performance Analysis and Optimization of a Pulse Jet Drilling Tool with an Impeller-Type Bottom Hole Disc Valve[J]. Petroleum Drilling Techniques, 2017, 45(2): 68-75. DOI: 10.11911/syztjs.201702011
    [8]Zuo Weiqin, Li Xuelian, Lu Yiyu, Liu Yong. Key Parameters of Removing Blockage with Rotating Jets and Sand-Tubes[J]. Petroleum Drilling Techniques, 2014, 42(6): 92-96. DOI: 10.11911/syztjs.201406018
    [9]Jiang Zengdong, Wang Guanglei, Wang Wanjun, Yue Ting, Lu Shifen. Development of Cementing Evaluation Equipment DCX for Flushing Efficiency[J]. Petroleum Drilling Techniques, 2013, 41(3): 127-129. DOI: 10.3969/j.issn.1001-0890.2013.03.025
    [10]Wang Jiachang, Zhang Jincheng, Zhao Guoshun, Xiao Qi. Practice of 35 MPa High Pressure Jet Drilling[J]. Petroleum Drilling Techniques, 2012, 40(6): 22-26. DOI: 10.3969/j.issn.1001-0890.2012.06.005
  • Cited by

    Periodical cited type(10)

    1. 徐忠良,李悦悦. Hoek-Brown准则在致密砂岩弹性参数测井解释中的应用. 中国石油和化工标准与质量. 2017(12): 67-68 .
    2. 邢岳堃,张广清,李世远,王元元,杨潇. 套损井与取心井相似井段识别及其岩石力学参数确定方法. 石油钻探技术. 2017(04): 33-40 . 本站查看
    3. 尹帅,丁文龙,高敏东,周广照. 樊庄北部3号煤层现今应力场分布数值模拟. 西南石油大学学报(自然科学版). 2017(04): 81-89 .
    4. 尹帅,丁文龙,张宁洁,谢非,焦乃林. Hoek-Brown准则在致密砂岩抗剪强度参数测井解释中的应用. 测井技术. 2016(01): 91-97 .
    5. 侯连浪,梁利喜,刘向君,熊健. 基于BP神经网络的页岩静弹性模量预测研究. 科学技术与工程. 2016(30): 176-180+195 .
    6. 尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 . 本站查看
    7. 丁文龙,王兴华,胡秋嘉,尹帅,曹翔宇,刘建军. 致密砂岩储层裂缝研究进展. 地球科学进展. 2015(07): 737-750 .
    8. 丁文龙,尹帅,王兴华,张宁洁,张敏,曹翔宇. 致密砂岩气储层裂缝评价方法与表征. 地学前缘. 2015(04): 173-187 .
    9. 尹帅,丁文龙,赵威,孙圆辉,袁江如,丛森. 基于阵列声波测井的海陆过渡相碎屑岩地层裂缝识别方法. 石油钻探技术. 2015(05): 75-82 . 本站查看
    10. 尹帅,丁文龙,王濡岳,赵金利,刘建军,张宁洁. 陆相致密砂岩及泥页岩储层纵横波波速比与岩石物理参数的关系及表征方法. 油气地质与采收率. 2015(03): 22-28 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (611) PDF downloads (147) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return